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SUMMARY

A long-standing question in quantitative biology is
the relationship between mRNA and protein levels
of the same gene. Here, we measured mRNA and
protein abundance, the phenotypic state, and the
population context in thousands of single human
cells for 23 genes by combining a unique collection
of cell lines with fluorescently tagged endogenous
genomic loci and quantitative immunofluorescence
with branched DNA single-molecule fluorescence
in situ hybridization and computer vision. mRNA
and protein abundance displayed a mean single-
cell correlation of 0.732 at steady state. Single-cell
outliers of linear correlations are in a specific pheno-
typic state or population context. This is particularly
relevant for interpreting mRNA-protein relationships
during acute gene induction and turnover, revealing
a specific adaptation of gene expression at multiple
steps in single cells. Together, we show that single-
cell protein abundance can be predicted by multivar-
iate information that integrates mRNA level with the
phenotypic state and microenvironment of a partic-
ular cell.

INTRODUCTION

The linearity and accuracy of information transfer from a gene to

its gene products that define the cellular phenotype have been

investigated for many years (Liu et al., 2016), in particular, the

correlation between mRNA and protein abundance. An impor-

tant distinction among these studies is between those that

analyze correlations between protein and mRNA levels across

multiple genes in one sample and those that analyze such corre-

lations for individual genes across multiple samples. Numerous

studies using bulk approaches have been performed to analyze

the extent of correlation between these two molecular species,

identifying gene-specific and contextual effects, as well as

non-linear relationships (Csárdi et al., 2015; Edfors et al., 2016;

Fortelny et al., 2017; Golding et al., 2005; Greenbaum et al.,

2003; Ideker et al., 2001; Jovanovic et al., 2015; Li et al., 2014;

Liu et al., 2016; Peshkin et al., 2015; Schwanh€ausser et al.,

2011; Washburn et al., 2003; Wilhelm et al., 2014).
A further distinction should be made for studies that analyze

correlations between mRNA and protein across single cells

that are genetically identical and exposed to identical conditions.

The first study quantifying both molecular species and their cor-

relation in bacteria using endogenous gene tagging (Taniguchi

et al., 2010) reported this correlation to be largely non-existent.

In mammalian cells, depending on the cell type and genes stud-

ied, reported single-cell correlations vary (Albayrak et al., 2016;

Genshaft et al., 2016; Peterson et al., 2017; Stoeckius et al.,

2017). Accurate quantification of mRNA and protein levels in sin-

gle mammalian cells has, however, been technically challenging

due to the lack of systematic endogenous gene tagging and the

problem of sensitivity and sampling bias. Moreover, adherent

mammalian cells display emergent properties at the population

level due to local effects, resulting in a wide variety of cell sizes,

shapes, and positions in the cell cycle (Gut et al., 2015; Snijder

et al., 2009). These determine a large amount of cell-to-cell vari-

ability in cytoplasmic mRNA abundance (Battich et al., 2015) and

may well influence mRNA-to-protein relationships in single cells.

Here, we use a recently made available collection of human

cell lines (HeLa cells and induced pluripotent stem cells) in which

various proteins were tagged with monomeric enhanced green

fluorescent protein (mEGFP) at their endogenous genomic loci

using CRISPR-Cas9 or zinc-finger technology (Cai et al., 2018;

Koch et al., 2018; Politi et al., 2018; Reichmann et al., 2018; Rob-

erts et al., 2017; Walther et al., 2018). On these cells, we applied

a sensitive high-throughput (HT) automated method of single-

molecule fluorescence in situ hybridization (sm-FISH) (Battich

et al., 2013), in combination with large-scale high-resolution im-

aging and quantitative image processing. To complement the

use of fluorescent protein tagging, we also combined HT auto-

mated sm-FISH with indirect immunofluorescence imaging to

quantify both mRNA and protein levels of non-tagged genes.

This allowed us to obtain measurements of protein and mRNA

abundance of endogenously expressed genes from thousands

of single cells, as well as a large set of features quantifying their

phenotypic state and the population context of each single cell.

These measurements reveal that while human adherent cells

display high cell-to-cell variability in mRNA and protein abun-

dance, correlations between these molecular species across

single cells are evident for each of the 23 genes analyzed. More-

over, when the phenotypic state and microenvironment of indi-

vidual cells is considered, outliers in simple linear correlation an-

alyses can, in addition, be explained. Finally, we show that

during gene induction of JUN, an immediate early response

gene, the lag times between, and the rates of mRNA and protein
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Figure 1. Image-Based Quantification of mRNA and Protein Levels and Cell-to-Cell Variability in Their Abundance

(A) Scheme of the workflow, left to right: generation of endogenously tagged cells, detection and quantification of both protein and mRNA, extraction of cellular

features, and data clean-up (badly segmented cells and border cells).

(B) Scatterplot of bulk (cell-averaged) mRNA and bulk (cell-averaged) protein abundances of all inspected genes, with indicated correlation between these values

across all 23 genes. Each gene is, in addition, colored according to the Pearson’s correlation coefficient (mean of two technical replicates as listed in (D) between

its mRNA and protein abundance across single cells.

(C) Plots of single-cell correlation coefficients between mRNA and protein abundances for individual genes, separated by cell line (HeLa and hiPS cells) and

protein detection method (GFP or antibody, AB). Plasmid indicates the single-cell correlation coefficient between mRNA and protein abundance of EEA1 ex-

pressed as cDNA from a plasmid.

(D) Pearson’s correlation coefficients (mean rP of two technical replicates) betweenmRNA and protein abundance for individual genes calculated across all single

cells; same values are used by the coloring of genes in (B).

(legend continued on next page)
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synthesis and degradation are different for single cells in different

phenotypic states and microenvironments. We also provide ev-

idence that some of these differences could be the result of regu-

lated intracellular positioning of cytoplasmic mRNA transcripts

at the single-cell level.

RESULTS

Image-Based Measurements of Endogenous mRNA and
Protein Levels in Human Cells
Endogenous gene tagging with a fluorescent protein allows

highly sensitive quantification of endogenous protein levels in

single cells (Politi et al., 2018; Wachsmuth et al., 2015). Further-

more, the fluorescence intensity is known to be proportional to

the number of protein molecules and can therefore be used to

determine the relative amounts of proteins within cells (Lo

et al., 2015). We therefore decided to use two recently made

available sets of human cell lines, the first comprising 11 lines

derived from HeLa cells (Koch et al., 2018; Wachsmuth et al.,

2015) and the second comprising 7 lines derived from human-

induced pluripotent stem (hiPS) cells (Roberts et al., 2017). In

each cell line, one gene was tagged with a mEGFP at the endog-

enous locus using CRISPR-Cas9 or zinc-finger technology. To

quantify the mRNA abundance of the tagged genes in single

cells, we used sm-FISHwith branchedDNA (bDNA)-based oligo-

nucleotide probes (bDNA sm-FISH) against the mEGFP

sequence in the transcript. bDNA sm-FISH enables absolute

mRNA quantifications with detection efficiencies above 85% in

the cytoplasm, or nucleus, of single cells. At the cell-averaged

level, quantification of mRNA abundance with bDNA sm-FISH

agrees well with RNA-seq across 857 human genes (r = 0.8–

0.9) (Battich et al., 2013). Moreover, given its false-positive count

of less than 1 transcript per cell and 5-fold higher signal-to-noise

ratio compared to other sm-FISH methods, bDNA sm-FISH is

well suited also for genes with low expression levels and works

in a HT setup (Battich et al., 2013, 2015). Thus, we combined

the imaging of fluorescently tagged proteins with bDNA sm-FISH

in automated large-scale microscopy (Figure S1A). Additionally,

we used bDNA sm-FISH with indirect immunofluorescence to

quantify protein levels of 5 untagged genes (Figure 1A). Using

a previously established platform for image-based transcriptom-

ics (Battich et al., 2013; Stoeger et al., 2015), we obtained repro-

ducible transcript counts in thousands of single cells, together

with their relative background-corrected protein quantities

derived from the integrated fluorescence intensities of the

mEGFP or fluorescent antibody signal (Figures 1A and S1B–

S1G; Tables S1–S3). We also inferred the cell-cycle position of

cells by pulsing them with EdU for 15 min prior to the fixation

(Gut et al., 2015).

In total, we performed these measurements for 23 genes that

encode components of the cytoskeleton, endocytic, and exo-

cytic organelles, the nuclear pore complex, cell adhesion struc-

tures, cell cycle regulators, and kinases. At the mean (bulk) level,

we observed widely varying amounts of cytoplasmic mRNA spot
(E) Example images of single cells from image-based quantifications (protein stai

the quantified protein (integrated intensity [AU]) and transcript abundance (spo

supervised machine learning (SVM) are gray (badly segmented and border cells).

images.
counts and protein intensities, with the lowest expressed gene

being EEA1 at 20 transcripts per cell (which is within 53% of

the lowest expressed genes according to RNA-seq) and the

highest expressed gene being ACTB at >610 transcripts per

cell (which is within 2% of highest expressed genes according

to RNA-seq) (Battich et al., 2013) (Figure 1B). The correlation be-

tween bulk (cell-averaged) mRNA and protein levels across the

23 genes was r = 0.714 (Figure 1B). For a bulk analysis, this num-

ber of genes is obviously small compared to other studies, which

studied bulk mRNA-protein relationships across several thou-

sands of genes (Edfors et al., 2016; Jovanovic et al., 2015;

Lawless et al., 2016; Schwanh€ausser et al., 2011). Nevertheless,

the explained variance (R2) across genes in our bulk analysis of

HeLa and hiPS cells combined was 0.51, which compares well

to previous bulk studies reporting an (uncorrected) R2 of 0.47–

0.54 in mouse bone-marrow-derived dendritic cells (Jovanovic

et al., 2015), 0.37–0.41 in MCF7 and NIH3T3 cells

(Schwanh€ausser et al., 2011), 0.15–0.62 in a range of different

cancer-derived cell lines (Edfors et al., 2016), and 0.58 in

S. cerevisiae (Lawless et al., 2016).

At the single-cell level, we observed that correlations between

the cytoplasmic mRNA spot count and protein intensity across

thousands of single cells varied for individual genes, ranging

from r = 0.453 to r = 0.864, with a mean of r = 0.732 (Figures

1C and 1D). These correlations are generally higher than previ-

ous findings using single-cell measurements, which reported

r values lower than 0.1 (Albayrak et al., 2016; Darmanis et al.,

2016; Genshaft et al., 2016), but comparable to a recent study

which reported r values up to 0.86 based on single-cell

sequencing of transcripts and DNA-barcoded antibodies (Peter-

son et al., 2017). This can be appreciated in cell population over-

views in which single-cell expression levels of both molecular

species are visualized (Figure 1E). The extent of single-cell cor-

relation did not depend on themeanmRNA or protein expression

level of the gene, as was evident for genes with different expres-

sion levels (Figures S1H–S1J). For instance, we found similar sin-

gle-cell correlations for EEA1 (r = 0.697) andNCAPD2 (r = 0.724),

even though EEA1 is expressed at a mean mRNA spot count of

20 molecules per cell (Figure 1B), while NCAPD2 has a mean

mRNA spot count of 124 molecules per cell (Figure 1B). The

scaling of protein with mRNA abundance was also gene specific,

as evident from the different slopes of their linear regression

curves of single-cell mRNA versus protein abundances (Fig-

ure S1K). Moreover, genes with unimodal mRNA and protein dis-

tributions (e.g., endocytosis regulators, nuclear pore proteins,

and cytoskeletal components) displayed similar correlations

(r = 0.453–0.864) as genes with bi- or multimodal distributions

(e.g., CEP192, NCAPD2, NCAPD3, NCAPH, PLK1, and SMC4)

(r = 0.712–0.853) (Figures S1K and S1L). We also observed

that higher cell-to-cell variability in mRNA abundance was

accompanied by a higher cell-to-cell variability in protein content

(p < 10�4) (Figures S1L–S1O). Finally, when we transiently ex-

pressed an exogenous cDNA version of EEA1 without introns

and lacking the endogenous 30- and 50-untranslated ends on
n or mEGFP signal in gray, bDNA sm-FISH in red). Middle-right: visualization of

ts) per cell by pseudo-coloring single-cell segmentations. Cells discarded by

Right: scatterplots of all measured single cells for the corresponding example

Cell Systems 7, 1–14, October 24, 2018 3



(legend on next page)

4 Cell Systems 7, 1–14, October 24, 2018

Please cite this article in press as: Popovic et al., Multivariate Control of Transcript to Protein Variability in Single Mammalian Cells, Cell Systems (2018),
https://doi.org/10.1016/j.cels.2018.09.001



Please cite this article in press as: Popovic et al., Multivariate Control of Transcript to Protein Variability in Single Mammalian Cells, Cell Systems (2018),
https://doi.org/10.1016/j.cels.2018.09.001
the transcript (Lawe et al., 2000), the single-cell correlation be-

tween cytoplasmic mRNA and protein abundance (r = 0.31;

99.99% CI = 0.26–0.37) was more than 2-fold lower than for

the endogenous gene (r = 0.70; 99.99% CI = 0.67–0.73) (see

Supplemental Information and STAR Methods), suggesting the

involvement of endogenous transcriptional and posttranscrip-

tional mechanisms in establishing single-cell relationships be-

tween both molecular species. These measurements reveal

that for the 23 genes interrogated, cytoplasmic levels of mRNA

and their corresponding protein abundance are, at steady state,

generally well correlated at the single-cell level in mammalian

cells and that the scaling and extent of correlation between these

molecular species are gene specific.

Correlation Outliers Reveal Cellular State-Specific
mRNA-to-Protein Ratios in Individual Cells
We next asked whether the single cells that are outliers in a linear

correlation analysis between steady-state mRNA and protein

abundance across single cells from a whole cell population

display specific phenotypic states or microenvironments, which

may suggest the presence of a non-linear relationship. To

explore this, we used our image-based transcriptomics platform

(Battich et al., 2013; Stoeger et al., 2015; Battich et al., 2015) to

extract �180 features that quantify properties of the cell and nu-

cleus shape and area, of protein and DNA content and texture,

and of the extent of local cell density, number of neighbors,

and relative location to other cells and to empty space in the

cell population. We also extracted features describing DNA repli-

cation activity (using the EdU stain) and 34 features quantifying

the spatial positioning of eachmRNAmolecule within each single

cell (Figure 2A).

We selected single cells that were outliers in mRNA-to-protein

ratios as determined by being 1.5 standard deviations away from

linear regression fits between single-cell mRNA and protein

abundance of each gene (Figure 2B) and visualized whether

these cells are, in particular, phenotypic or microenvironmental

states by highlighting them in two-dimensional (2D) maps (Fig-

ures 2C–2E). These maps are created with all cells from the

various analyzed genes, pooled per cell line and protein detec-

tion method, by means of Barnes Hut t-distributed stochastic

neighbor embedding (tSNE) (van der Maaten, 2008), using a

multivariate set of principal component-reduced features of the

phenotypic state of single cells (e.g., DNA content, replication,
Figure 2. Explaining Variability in Protein Abundance and Cytoplasmic

(A) Schematic representation of features describing the cellular state, populatio

molecules within individual cells.

(B) Scheme of indexing single cells that are outliers (1.5 standard deviations [SD]

and their visualization in a two-dimensional (2D) tSNE plot. All single cells from bo

the phenotypic state and microenvironment of each cell. Features used for BH-t

(C–E) BH-tSNE embedding of all single cells of all genes measured, separated by

tagging at endogenous loci (D and E). Blue: outliers having higher protein levels; re

1 SD away from the linear fit).

(F) Ratios of mRNA abundance between G1 and G2 cells divided by the ratios o

obtained from the dataset published in Tanenbaum et al. (2015) or of mRNA abu

between G2 and G1 cells as measured in this study.

(G) Scatterplot of single-cell mRNA and protein abundances of PLK1, in which eac

index). Line represents smoothing spline (parameter = 0.005).

(H) Plots of explained variance in single-cell protein abundance in PLK1 using its m

model fits performed separately to all G1 and all G2 cells. Lines indicate 99.9%
and cell and nucleus size) and their microenvironment (e.g., local

cell density). tSNE is a machine learning algorithm used for non-

linear dimensionality reduction of high-dimensional data and its

visualization in a low-dimensional space. More specifically, this

transforms the data such that similar objects (single cells with

similar feature values) will be placed close to each other, while

dissimilar objects will be placed far from each other. For single

cells, this can be evaluated by projecting the original values of

single-cell features onto each data point (which are single cells)

within the 2D tSNE plot, showing that cells of similar properties

are close to each other and occupy a specific region in the plot

(Figure S2A). The Barnes Hut variant of tSNE significantly re-

duces computational cost, hence being more applicable to

larger datasets that contain more than several thousand single

cells (van der Maaten, 2014).

When we highlighted the outliers from all genes combined

(Figures 2C–2E), or separately per gene (Figures S2A–S2D), we

observed that they non-randomly distributed in the tSNE plots

of both HeLa and hiPS cells. This suggests the existence of

phenotypic state- and population context-specific mRNA-to-

protein relationships in single cells. For instance, mitotic cells

had more mRNA than protein for the genes FBL (Fibrillarin) and

LMNB1 (Lamin B1) and nuclear pore complex components

(NUP214, TPR,RANBP2, andNUP107) when compared to inter-

phase cells. This finding supports previous reports from bulk

measurements showing that their transcription continues during

mitosis while protein translation is halted (Palozola et al., 2017;

Stumpf et al., 2013; Tanenbaum et al., 2015) and extends it to

the single-cell level. We observed the opposite trend for genes

encoding endocytic and cytoskeletal proteins (TFRC, ACTB,

and TUBA1B), as these proteins have generally long half-lives

(Boisvert et al., 2012; Tani et al., 2012), resulting in more protein

than mRNA in mitotic cells (Figures S2A–S2D), when compared

to interphase cells. We also found that outliers with higher pro-

tein levels than mRNA, enriched in regions of the maps repre-

senting cellular states of a duplicated genome (late S and G2

phases). Whenwe quantified the differences inmRNA-to-protein

ratios between single cells in the G1 and G2 phases of the cell

cycle across all genes and compared the obtained values to

measurements on ribosome occupancy along the cell cycle ob-

tained with an entirely orthogonal, bulk approach performed in a

different cell line (Tanenbaum et al., 2015), we observed a

good agreement of results (Figures 2F, S2E, and S2F). Such
mRNA Abundance in Single Cells for Various Genes

n context, and microenvironment, as well as spatial patterns of single mRNA

) from a linear regression fit between single-cell mRNA and protein abundance

th replicates are embedded in 2D BH-tSNE, using Z scored features describing

SNE are listed in Figure S2.

whether the protein was detected with antibodies (C) or by fluorescent protein-

d: outliers having highermRNA levels than expected from the linear fit (residuals

f the density of ribosome footprints per gene (FP) between G2 and G1 cells,

ndance between G1 and G2 cells divided by the ratios of protein abundance

h cell is colored according to its position in the cell cycle (cell cycle progression

RNA abundance as an independent variable, based on 100 bootstraps of linear

confidence intervals (CIs).
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Figure 3. Multivariate Models of mRNA Abundance and Cellular State Accurately Predict Single-Cell Protein Abundance

(A) Explained variance (R2) of single-cell mRNA abundance (gray-boxed left column) and protein abundance (light-blue boxed columns) for the genes quantified in

HeLa cells using various types of (multivariate) linear models (GLM or PLSR) based on combinations of features. (1) PLSR model based on cellular features. (2)

GLM model using mRNA abundance. (3) PLSR model combining cellular features (reduced to principal components) and mRNA abundance. (4) PLSR model

combining cellular features, mRNA abundance, spatial features of mRNA subcellular patterning, and neighbor activity. Models were learned on one population of

cells and tested on a separate population of cells from a replicate experiment.

(B) Plots of Kolmogorov-Smirnov (KS) statistic values and p values (�Log10) of F-tests comparing the performance of model 2 (PLSR models based on cellular

features) and model 3 (PLSR models combining cellular features and mRNA abundance) to predict single-cell protein abundances measured in a separate

(legend continued on next page)
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cell cycle-dependent differences in mRNA-to-protein ratios can

also be expected for genes whose expression is rapidly induced

at a specific point in the cell cycle. When we looked at the single-

cell protein and mRNA abundances of PLK1, a central regulator

of mitosis, which is induced during the late S phase (Carmena

and Earnshaw, 2003; Zitouni et al., 2014), and color-coded cells

according to their position in the cell cycle (Gut et al., 2015), we

found that the scaling of protein with mRNA was stronger in G2

than in G1 cells (Figures 2G and 2H) (R2
G1 = 0.462, 99.99% CI =

0.397–0.518; R2
G2 = 0.608, 99.99% CI = 0.548–0.672) (see Sup-

plemental Information and STAR Methods). This explains why

the majority of single-cell outliers with more protein than

mRNA relative to a linear fit calculated from the whole cell pop-

ulation were G2 cells. Since the distribution of cell cycle stages

among outlier cells is, for each analyzed gene, highly different

compared to the whole cell population (Figure S2B and Table

S4 for Fisher’s exact tests), this indicates that a major source

of cell-to-cell variability in protein-to-mRNA relationships comes

fromcell cycle-controlled differences in the transcription of these

genes and the translational efficiency of their mRNAs.

Multivariate Models of mRNA Abundance and Cellular
State Accurately Predict Single-Cell Protein Abundance
Because single-cell outliers in mRNA-to-protein correlations

distributed non-randomly in population context and phenotypic

state space, we reasoned that models predicting single-cell pro-

tein abundance from mRNA measurements should perform bet-

ter if they include the phenotypic and microenvironmental state

of single cells. To test this hypothesis, we learned data-driven

multilinear models for each gene using partial least squares

regression (PLSR) on a principal component-reduced multidi-

mensional space consisting of features describing the cellular

and microenvironmental state of cells. We then tested these

models by applying them to a separate population of cells from

a replicate experiment. While cytoplasmic mRNA abundance in

single cells is generally well predicted, as reported previously us-

ing multilinear models (Battich et al., 2015), single-cell protein

abundance is even better predicted by such models (model 1)

(Figures 3A, S3A, and S3B; Table S4). With a few exceptions,

these models predict protein abundance in single cells better

than models that use only mRNA abundance (model 1 versus 2

on protein abundance prediction). Adding mRNA abundance

as a predictor to models using cellular features improves their

ability to explain the measured protein abundance in single cells

(model 1 versus model 3 on protein abundance prediction) as

evident from F-test p values (Figure 3B), and for some genes

also from the explained variance and KS statistics (Figures 3A

and 3B), but the effect is often small, indicating that cellular fea-

tures already contain most of the information. Notably, this did

not work for a transiently expressed gene using a cDNA

construct and a viral promoter (Figures 3B, S3E, and S3F; Table

S4). Thus, non-endogenous gene expression does not only alter

single-cell correlations between mRNA and protein abundance
population of HeLa cells. Full overview of the number of principal components

Table S4.

(C) Example of pseudo-colored single-cell segmentation images (genes: PLK1, NU

to those predicted with linear models using only mRNA abundance (GLM), pred

models combining cellular features with mRNA abundance.
but also results in an inability to explain the varying mRNA-to-

protein ratios by heterogeneity in the microenvironment or

phenotypic state of single cells. This suggests that outliers to sin-

gle-cell correlations between mRNA and protein abundance in

genetically identical mammalian cells are determined by the

phenotypic state or population context of single cells, which

depend on endogenous mechanisms of transcriptional and

posttranscriptional gene regulation.

Single-Cell mRNA-to-Protein Ratios in a Highly Dynamic
Gene Induction System
While some of the genes analyzed are low abundant and show a

large amount of cell-to-cell variability in their expression, they did

not include typical non-steady-state conditions that apply to im-

mediate early response genes whose expression is rapidly

induced upon a stimulus and whose mRNA and protein turnover

rates are particularly high (Bahrami and Drabløs, 2016; Cook

et al., 1999). To investigate the behavior of non-steady-state sin-

gle-cell mRNA and protein abundance over time, we performed

gene induction experiments on JUN, an important transcription

factor and immediate early response gene whose expression is

induced by epidermal growth factor (EGF) (Figure 4A). Cells

grown for 72 hr were serum-starved for 16 hr and subsequently

stimulated with EGF to induce JUN gene transcription. At 7, 15,

20, 30, 40, 60, 90, and 210 min after induction, we fixed cells and

performed bDNA sm-FISH and immunofluorescence staining to

quantify both single-cell cytoplasmic and nuclear mRNA, as well

as protein abundance of endogenous JUN (Figure S4A; Tables

S5 and S6). We also measured nuclear mRNA abundance to

quantify the lag between nuclear and cytoplasmic mRNA

appearance, as well as the appearance of protein, as a function

of time. This becomes relevant for the correct interpretation of

single-cell correlations between mRNA and protein abundance

during acute gene induction experiments, which are initially far

from steady state.

Although the single-cell distributions of nuclear mRNA, cyto-

plasmic mRNA, and protein abundance displayed a large

amount of variability (Figure S4A) and were at certain time points

bimodal (Figure S4B), the time course revealed clearly distin-

guishable consecutive waves (Figure 4A) of mRNA and protein

production. Upon gene induction, nuclear mRNA was the first

to show a peak in abundance. It was followed, with a time delay

of 20 min on average, by a wave of cytoplasmic mRNA abun-

dance that was followed, with a second time delay of 50 min

on average, by a wave of protein abundance. When we com-

bined all cytoplasmic mRNA and protein measurements from

all single cells and all time points and plotted these (Figure 4B),

we observed an almost complete coverage of the ‘‘phase

space’’ by single cells, showing the importance of knowing to

which time point the cells belong, considering the wide variety

of states such a dynamic gene induction system can have.

Notably, while linear correlations between cytoplasmic mRNA

and protein abundance in single cells were low at early
used for models and the various statistical tests calculated are provided in

P214) for measured values of protein abundance in each single cell, compared

icted with PLSR models using only cellular features, and predicted with PLSR
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Figure 4. mRNA-Protein Relationships of JUN during EGF Gene Induction

(A) Expression profiles for mRNA and protein abundance of JUN in HeLa cells after serum starvation and addition of EGF. Colors represent 0.375 and 0.625

quantiles (dark gray) and 0.25 and 0.75 quantiles (light gray) around the median (0.5 quantile) of single-cell quantifications.

(B) Scatterplot of mRNA and protein abundance for all single cells across all time points of EGF stimulation. Time points are colored differently.

(C) Pearson’s correlation coefficients of mRNA and protein abundance across single cells for the various depicted time points.

(legend continued on next page)
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(0–20min) and late (90–210min) time points, they were high at 40

and 60min (Figures 4C and S4C), which are the time points when

cytoplasmic mRNA abundance reaches its maximum or begins

to decline, and protein abundance starts to increase or ap-

proaches its maximum (Figure 4A). We moreover find that nu-

clear mRNA abundance is less well predicted by features of

the cellular state and population context than cytoplasmic

mRNA abundance (Figure 4D). This supports the notion that a

delay between mRNA transcription and nuclear export can

buffer unpredictable variability (Bahar Halpern et al., 2015; Bat-

tich et al., 2015; Singh and Bokes, 2012; Sturrock et al., 2017;

Xiong et al., 2009) and that cytoplasmic mRNA abundance of

JUN is a good predictor of its protein abundance in single

mammalian cells at 30–60 min after gene induction (Figures 4D

and 4E).

We next asked whether variation in synthesis, nuclear export,

and degradation of mRNA, as well as synthesis and degradation

of protein, are dependent on the phenotypic state or population

context of a cell. We first inspected whether cellular features

change during the time of EGF-mediated gene induction, which

was not the case except at 210 min after gene induction. Subse-

quently, we clustered single cells from all time points in which no

phenotypic change upon EGF exposure was observed (up to

90 min), based on similarities in their multivariate set of pheno-

typic states (DNA content, nucleus size, and cell size) and pop-

ulation context features (local cell density) (Figures S5A–S5E),

using self-organizing maps (SOMs), which apply neural

network-based unsupervised machine learning for single-cell

clustering and dimensionality reduction, recently developed for

complex multidimensional data originating from flow cytometry

(Van Gassen et al., 2015). A Kolmogorov-Smirnov-based non-

parametric test revealed that the distributions of the median

feature values across the SOM clusters approximate the feature

value distributions across all single cells, which was not the case

formedians of randomly grouped single cells (Figures S5C–S5E).

Since the clusters contained cells from all time points, this
(D) Left: Explained variance (R2) in single-cell nuclear and cytoplasmic mRNA a

features (model 2) and cellular features plus neighbor activity features (model 3)

experiment that were stimulatedwith EGF for a same period of time. Right: Explain

using only cytoplasmic mRNA abundance (model 1), based on PLSR models u

(model 3), using cellular features and mRNA abundance (model 4), and using c

patterning features of mRNA (model 5) as predictors.

(E) Plots of Kolmogorov-Smirnov (KS) statistic values and p values (�Log10) of F-

andmodel 3 (based on cellular features andmRNA abundance) to predict JUNpro

with EGF for a same period of time.

(F) Median expression profiles of inferred JUN stimulation trajectories obtained aft

their cellular features and local cell density (population context) using self-orga

values of DNA content, cell size, and local cell density (LCD), calculated as the m

(G) Time delays between peaks in nuclear and cytoplasmicmRNA abundance, bet

in protein and nuclear mRNA abundance in all SOM clusters (see Figure S5). Bla

(H) BH-tSNE embedding of SOM clusters based on Z scored median values of c

median values for DNA content, cell size, and LCD, calculated for each of the SO

(I–M) Projection on tSNE-embedded SOM clusters of transcription rates (from de

mRNA nuclear export rates (from deltas between nuclear mRNA counts at 20 and

between cytoplasmicmRNAcounts at 20 and30min after EGF stimulation) (K), cyt

40 and 60min aswell as at 60–90min after EGF stimulation) (L), and of protein trans

stimulation) (M). Deltas (spot count for mRNA and AU for protein intensities) were

(N) Comparison of changes of median values of nuclear and cytoplasmic mRNA a

(H) that contain cells from a different cycle stage (G1 andG2) but have the same siz

(ii), cells that are all in G2 and have a similar LCDbut different cell size (iii), cells that

G2 and have the same size but a different LCD (v). Bin number indicated corresp
allowed us to compare the dynamics of nuclear and cytoplasmic

mRNA counts and protein abundance between clusters of cells

with different phenotypic and microenvironmental properties

(Figure 4F). To analyze these dynamics in more detail, we per-

formed cross-correlation analysis between nuclear mRNA, cyto-

plasmic mRNA, and protein abundance over time for each of the

groups separately (Figure S5F), and we calculated the delays

associated with the observed dynamics (Figure S5H). While

cross correlations were very high within each of the subgroups

of cells (Figure S5F), the lag times at which maximum correlation

between the abundance of all three molecular species was

found, varied, as did the time differences (termed deltas)

between their first appearances, the peaks, and the disappear-

ances (Figures 4G, S5G, and S5H). To visualize whether this vari-

ation is accompanied by variation in specific cellular properties,

we first embedded all the SOM clusters within a 2D tSNE space,

based on their median values for DNA content, nuclear size, cell

size, and local cell density (Figure 4H). When we projected the

values of those 4 features onto the tSNE plot (Figures 4H–4M),

we observed that cells that are large, in the G2 phase of the

cell cycle, and are growing in sparsely populated regions have

much higher mRNA transcription and protein translation rates,

resulting in higher levels of nuclear mRNA, cytoplasmic mRNA,

and protein than cells that are small and grow in densely popu-

lated regions (Figures 4N and S5I).

Whenwe compared themedian increase ofmRNA and protein

in the different clusters over the gene induction time course, we

observed that adaptations in gene expression output can occur

at the transcriptional and posttranscriptional level (Figures 4Ni–

4Nv). First, we compared single-cell clusters that were similar

in all quantified cellular features except in DNA content (bin 75

versus 79) and did not observe any adaptation (Figure 4Ni).

Thus, G1 cells that are as large as G2 cells and experience the

same local cell density transcribe similar amounts of JUN

mRNA and synthesize similar amounts of protein. Next, we

compared cells that experience a similar amount of local cell
bundance of JUN using multivariate linear models (PLSR) based on cellular

reduced to principal components. Models are tested on cells from a replicate

ed variance (R2) in single-cell protein abundance of JUNbased on linearmodels

sing cellular features (model 2), using cellular features and neighbor activity

ellular features, neighbor activity, mRNA abundance, and spatial subcellular

tests comparing the performance of PLSR model 2 (based on cellular features)

tein abundances in single cells from a replicate experiment that were stimulated

er clustering single cells from the various time points based on their similarity in

nizing maps (SOMs) (see Figure S5). Color map represents mean-normalized

edian of all the cells that belong to a particular cluster.

ween peaks in protein and cytoplasmic mRNA abundance, and between peaks

ck color indicates SOM clusters of cells that were non-responders.

ellular and population context (LCD) features. Color map represents Z scored

M clusters.

ltas between nuclear mRNA counts at 15 and 20 min after EGF stimulation) (I),

30 min after EGF stimulation) (J), mRNA cytoplasmic import rates (from deltas

oplasmicmRNAdecay rates (fromdeltas between cytoplasmicmRNAcounts at

lation rates (fromdeltas between protein abundance at 40 and 60min after EGF

divided by the time (in min) between the respective time points to obtain rates.

bundance and protein abundance between pairs of SOM clusters highlighted in

e and LCD (i), cells that are all in G1 and have a similar LCD but different cell size

are all in G1 and have the same size but a different LCD (iv), or cells that are all in

onds to the cluster number in (H).
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density but are different in cell size (bins 3 and 56 versus 75 and

73). We observed a strong difference in nuclear and cytoplasmic

mRNA abundance and in protein levels (Figures 4Nii and 4Niii).

This indicates that adaptation of JUN expression to cell size oc-

curs primarily at the transcriptional level, which may be part of a

general mechanism to assure constant mRNA concentration as

cells increase in volume (Battich et al., 2015; Padovan-Merhar

et al., 2015). However, when we compared single-cell clusters

with similar cell size but experiencing different local cell densities

(bins 12 versus 22 and 56 versus 41), we observed a different and

unexpected type of adaptation. While the transcriptional output

was similar in these cells, as expected given their similar sizes,

their cytoplasmic mRNA abundance was different, and so was

their protein translational output. This indicates that cells experi-

encing a high local cell density degrade their cytoplasmic mRNA

slower and produce more protein than cells experiencing low

local cell density (Figures 4Niv and 4Nv).

Together, these results illustrate that JUN gene expression dy-

namics are highly variable between individual cells, relating to

specific properties of the phenotypic state and microenviron-

ment. While we demonstrated some of these effects specifically

by comparing single-cell clusters that are similar in all except one

of the quantified differences, they usually occur simultaneously,

which can lead to non-intuitive outcomes. For instance, cells that

experience high local cell density are normally also smaller than

cells experiencing low local cell density. While the smaller size

may lead to a lower transcriptional output in the nucleus, the

higher cell density may at the same time reducemRNA degrada-

tion in the cytoplasm and therefore prevent a concomitant

reduction in translational output (e.g., compare bin 73 in Fig-

ure 4Niii with bin 41 in Figure 4Nv). This results in cells with highly

varying transcriptional outputs but similar protein output, sug-

gesting an intricate regulation of mRNA-to-protein relationships

in single cells.

Cell-to-Cell Variability in Subcellular Localization
of mRNAs
To investigate these non-intuitive adaptations of JUN gene

expression further, we examined the intracellular localization of

JUN transcripts. We observed that JUN transcripts display

different cytoplasmic patterns over time. 30 min after gene in-

duction, JUN mRNAs appear more clustered, whereas at

60 min after induction, they are found to be more dispersed in

the cytoplasm (Figure 5A). In contrast, the cytoplasmic tran-

scripts of HPRT1, a constitutively expressed housekeeping

gene, remained unaltered during the course of the gene induc-

tion experiment (Figures S5J and S5K). To systematically quan-

tify the spatial reorganization of JUN transcripts in an unbiased

manner, we performed unsupervised clustering of single cells

based on spatial features extracted from themRNA spots as pre-

viously published (Battich et al., 2013). This analysis revealed

three principal classes of spatial patterning of JUN transcripts

in the cytoplasm of cells, namely a perinuclear non-clustered

(class 1), a peripherally clustered (class 2), and a peripherally

non-clustered (class 3) pattern (Figure 5B). Generally, class 1

and class 3 patterns are less frequently observed than class 2

patterns. Class 1 patterns occur primarily at earlier time points

after gene induction (30min), while class 3 patterns occur mostly

at later time points (60 min) (Figure 5C).
10 Cell Systems 7, 1–14, October 24, 2018
When we quantified the propensity for spatial patterns for

different single-cell clusters depending on the phenotypic state

and microenvironmental features of cells, we noticed that class

1 patterns are seen specifically in large cells experiencing low

local cell density, while class 3 patterns are specifically seen in

small cells experiencing high local cell density (Figures 5D–5G)

These differences in patterning corresponded to the cells’ ability

to maintain a similar cytoplasmic mRNA abundance despite

highly different transcriptional outputs (Figures 5H and 5I). In

large cells experiencing low cell density (bin 73), which have a

large transcriptional output, the JUN transcripts quickly adopt

a class 2 pattern, which persists until cytoplasmic mRNA is

degraded (Figure 5I). However, in cells that are small and expe-

rience high local cell density (bin 41), the class 2 pattern is less

frequently observed, and JUN transcripts adopt a class 3

pattern, in which propensity increases over the duration of

gene induction (Figure 5I). This may reflect the existence of a

specific mechanism in small cells in densely populated areas

to protect JUN transcripts from degradation, allowing these cells

to have similar cytoplasmic mRNA content despite their lower

transcriptional output, and concomitantly to have a similar pro-

tein translational output. In summary, these results show that

also cytoplasmic patterning of mRNA varies in a non-random

fashion between genetically identical cells, which for JUN may

reflect a posttranscriptional mechanism of gene expression

adaptation to the cellular microenvironment.

DISCUSSION

In this work, we used a set of recently made available human cell

lines in which specific genes are endogenously tagged with a

fluorescent protein epitope (Cai et al., 2018; Koch et al., 2018;

Politi et al., 2018; Roberts et al., 2017). We combined imaging

of protein with bDNA-based single-molecule FISH to obtain sen-

sitive and reproducible readouts of both mRNA and protein

abundance of the same gene in thousands of single cells. This

was complemented with quantitative immunofluorescence for

untagged genes. These quantifications show that single-cell cor-

relations between the steady-state abundance of mRNA and

protein of the same gene are generally high in adherent mamma-

lian cells. How can this be different from previous findings in

bacteria (Taniguchi et al., 2010)? Besides possible technical

explanations, we studied adherent mammalian cells that do

not grow in isolation but are part of a growing cell population.

Through collective or population context effects, these cell pop-

ulations display emergent properties that strongly influence gene

expression, position in the cell cycle, and the phenotypic state of

single cells. This represents a major source of cell-to-cell vari-

ability that affects both mRNA and protein abundance, which

may be different in liquid cultures of bacteria, where individual

cells are forced to stay in isolation. In addition, mRNA and protein

turnovers are slower in mammalian cells compared to bacteria,

which can have a strong impact on single-cell correlations (Sha-

mir et al., 2016). Moreover, mammalian cells have a nucleus and

can display considerable nuclear retention of transcripts, which

can passively filter noise in transcription (Bahar Halpern et al.,

2015; Battich et al., 2015; Singh and Bokes, 2012; Sturrock

et al., 2017; Xiong et al., 2009) and have active mechanisms of

noise filtering through feedback loops (Alon, 2007). As a result,



Figure 5. Cell-to-Cell Variability in Subcellu-

lar Localization of mRNA

(A) Images of observed spatial patterns of JUN

cytoplasmic mRNA. Green signal belongs to the

bDNA smFISH-labeled single mRNA molecules of

JUN; blue signal represents DNA stain.

(B) Three distinct classes of intracellular spatial

patterns observed for JUNmRNA, based on single-

cell clustering of all single cells from all time points

of the EGF induction experiment using single-cell

features of spatial patterning of mRNA spots.

(C) Median values of single-cell classification

probabilities to the three classes for all cells of a

particular time point after EGF induction.

(D) BH-tSNE embedded SOM clusters, colored for

median values of DNA content, cell size, and LCD

(top, as in Figure 4) and colored for median prob-

ability of all cells in each cluster to belong to the

three spatial pattern classes during the time of

appearance ofmRNA in the cytoplasm (30min) and

during its decay (60 min).

(E and F) Pseudo-colored single-cell segmentation

images of JUN mRNA according to the highest

probability of each single cell for a particular spatial

pattern class at 30 min (E) and 60 min (F) after

addition of EGF. Colors represent discretized

probability of 1 to belong to a particular spatial

class, based on a threshold of 0.6. Dark gray cells

were discarded by SVM (image border or badly

segmented cells), and light gray cells were dis-

carded due to having less than 20 spots per cell,

which prevents the calculation of spatial patterns.

(G) Zoomed insets from (E) and (F), with their cor-

responding original bDNA smFISH image. Green:

bDNA smFISH labeling of JUN mRNA; blue: DAPI.

(H) Changes in median nuclear and cytoplasmic

mRNA and protein abundance of cells that belong

to the indicated bin (SOM cluster), which both

contain G2 cells but of different size and local cell

density (LCD). Bin 73 contains large cells at low

LCD and bin 41 small cells at high local cell density.

Bin numbers are also indicated in the tSNE plot of

SOM clusters in (D).

(I) Median probability of cells belonging to the three

mRNA subcellular spatial pattern classes for the

two bins from (G) during EGF gene induction.
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transcript abundance in the cytoplasm of a single cell is more

predictable by its phenotypic state and population context

than in the nucleus, which therefore serves as a better predictor

of protein abundance, resulting in higher single-cell correlations.

Finally, we observed that single-cell correlations between

endogenous levels ofmRNA and protein are at least 2-fold higher

than single-cell correlations obtained from a transiently ex-

pressed cDNA with a non-endogenous promoter. This under-

scores the important role of endogenous transcriptional and

posttranscriptional gene regulation in controlling mRNA and pro-

tein variability in single cells. In addition, the approach applied

here cannot avoid technical noise in single-cell measurements,

implying that real correlations may even be higher.

Nevertheless, our measurements do indicate the existence of

a considerable fraction of single cells that do not fit a simple

linear relationship between mRNA and protein abundance. A

multivariate analysis of these cells revealed that these outliers

display specific phenotypic properties or experience a specific

population context. Such outliers are therefore likely not the

result of uncontrolled variation in gene expression but of regu-

latory mechanisms that differentially adapt the transcriptional or

translational output of a single cell to its size, position in the cell

cycle, or its microenvironment, as reported previously for bulk

and single-cell studies (Jovanovic et al., 2015; Padovan-Merhar

et al., 2015; Tanenbaum et al., 2015; Zopf et al., 2013). This

holds true for constitutively expressed genes, whose protein-

to-mRNA ratio is lower in G1 and higher in G2 cells (Tanen-

baum et al., 2015), for genes acutely expressed at specific

points of the cell cycle where they show sudden alterations

of this ratio, and especially when genes are rapidly induced

and show a fast turnover during gene induction experiments

(Jovanovic et al., 2015). A more detailed analysis of the latter

scenario for JUN, an early response transcription factor that in-

duces cell proliferation, provided evidence that such single-cell

adaptations can specifically occur at multiple steps of gene

expression, be it the duration and total output of gene tran-

scription, nuclear retention and export of mRNA, cytoplasmic

mRNA stability, or duration and total output of protein transla-

tion. This not only underscores the complexity of transcriptional

and posttranscriptional gene regulation mechanisms acting in

single cells (Vera et al., 2016) but shows that this complexity

is adapted to the multiple and sometimes opposing physiolog-

ical needs of a single cell, which can result in non-intuitive

outcomes. For JUN, we moreover reveal that its cytoplasmic

transcripts adopt a clustered pattern at early time points of

gene induction, which progress into a non-clustered localiza-

tion pattern at later time points of gene induction, specifically

in cells that are small and experience high local cell density.

This alteration in subcellular patterning may allow small densely

populated cells to have a similar translational output as large

cells in sparsely populated regions despite having a much

lower transcriptional output. While the molecular mechanisms

and causality underlying this phenomenon remain to be inves-

tigated, it fits the general notion that the stability of transcripts

can be regulated by altering their subcellular localization (Bux-

baum et al., 2015; Martin and Ephrussi, 2009; Moor and Itzko-

vitz, 2017). We therefore conclude that to derive meaningful

interpretations from quantitative analyses of mRNA-protein

relationships in single cells, these measurements must be per-
12 Cell Systems 7, 1–14, October 24, 2018
formed on a gene-by-gene basis and must take into account

the multivariate information of the phenotypic state of a single

cell and its microenvironment, as well as the subcellular

patterning of transcripts.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

c-Jun rabbit monoclonal antibody (C.238.2) ThermoFisher Cat #MA5-15172; RRID: AB_10979794

VPS35 goat polyclonal antibody Novus Biologicals Cat #IMG 3575; RRID:AB_614351

Purified mouse anti-human EEA1 antibody

clone 14/EEA1 (RUO)

BD Transduction Laboratories Cat #610456; RRID:AB_397829

Purified mouse anti-human CD71 antibody

clone M-A712 (RUO)

BD Transduction Laboratories Cat #555534; RRID:AB_395918

Purified mouse anti-human CD107a antibody

clone H4A3 (RUO)

BD Transduction Laboratories Cat #555798; RRID:AB_396132

Actin mouse monoclonal antibody ab3280

[ACTN05 (C4)]

Abcam Cat #ab3280; RRID:AB_303668

Chemicals, Peptides, and Recombinant Proteins

Probe against TFRC (human) type1 ThermoFisher VA1-12208-VC,#VX-06

Probe against LAMP1 (human) type1 ThermoFisher VA1-12096-VC,#VX-06

Probe against EEA1 (human) type1 ThermoFisher VA1-12193-VC,#VX-06

Probe against VPS35 (human) type1 ThermoFisher VB1-3034829-VC,#VX-01

Probe against ACTB (human) type1 ThermoFisher VA1-10351-VC,#VX-06

Probe against EGFP type1 (previously available

from Affymetrix)

ThermoFisher VF1-10141

Probe against JUN (human) type1 ThermoFisher VA1-12265-VC,#VX-06

Probe against HPRT1 (human) type1 ThermoFisher VA1-11124-VC,#VX-06

Probe against dapB (E Coli K12) type 1 (previously

available from Affymetrix against E Coli K12,

currently against Baccilus Subtilis)

ThermoFisher VF1-11712-VC,#VX-06

Epidermal growth factor (EGF), Human recombinant Millipore Cat #01-107

Alexa Fluor 647 NHS Ester (Succinimidyl Ester) ThermoFisher Cat A20106

GeneJuice Transfection Reagent Millipore Cat #70967

Bovine Serum Albumin, protease free, suitable

for hybridization

Sigma Aldrich Cat #B4287

Critical Commercial Assays

Click-iT EdU Alexa Fluor 647 Imaging Kit ThermoFisher Cat #C10340

ViewRNA ISH Tissue Assay Kit ThermoFisher Cat #QVT0050

ViewRNA Chromogenic Signal Amplification

Kit (1-plex)

ThermoFisher Cat #QVT0201

96 well microplates, flat bottom, clear, black Greiner Cat #655090

Deposited Data

Table S1 This manuscript https://doi.org/10.17632/5nwct8htjt.2

Table S2 This manuscript https://doi.org/10.17632/5nwct8htjt.2

Table S3 This manuscript https://doi.org/10.17632/5nwct8htjt.2

Table S4 This manuscript https://doi.org/10.17632/5nwct8htjt.2

Table S5 This manuscript https://doi.org/10.17632/5nwct8htjt.2

Table S6 This manuscript https://doi.org/10.17632/5nwct8htjt.2

Camera linearity measurements This manuscript https://doi.org/10.17632/5nwct8htjt.2

Experimental Models: Cell Lines

Paxillin hiPSC line AllenCell Cat #AICS-0005

Sec61 translocon beta subunit hiPSC line AllenCell Cat #AICS-0010

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Alpha tubulin hiPSC line AllenCell Cat #AICS-0012

Nuclear Lamin B1 hiPSC line AllenCell Cat #AICS-0013

Fibrillarin hiPSC line AllenCell Cat #AICS-0014

Actin beta hiPSC line AllenCell Cat #AICS-0016

Desmoplakin hiPSC line AllenCell Cat #AICS-0017

Tight junction protein ZO1 hiPSC line AllenCell Cat #AICS-0023

Myosin heavy chain 10 hiPSC line AllenCell Cat #AICS-0024

HeLa cell line (parental) Ellenberg lab (EMBL) (Mahen et al., 2014)

ZFN PLK1-mEGFP #24 HeLa line Ellenberg lab (EMBL) (Cai et al., 2018)

CRISPR NCAPD3-mEGFP #16 HeLa line Ellenberg lab (EMBL) (Walther et al., 2018)

ZFN CEP192-mEGFP #15 HeLa line Ellenberg lab (EMBL) (Cai et al., 2018)

ZFN mEGFP-NCAPH #9 HeLa line Ellenberg lab (EMBL) (Walther et al., 2018)

CRISPR NCAPD2-mEGFP #272-78 HeLa line Ellenberg lab (EMBL) (Walther et al., 2018)

CRISPR mEGFP-NCAPH2 #1 HeLa line Ellenberg lab (EMBL) (Walther et al., 2018)

CRISPR TPR-mEGFP #171 HeLa line Ellenberg lab (EMBL) (Cai et al., 2018)

CRISPR mEGFP-NUP214 #2-12 HeLa line Ellenberg lab (EMBL) (Cai et al., 2018)

CRISPR mEGFP-RANBP2/NUP358 #97 HeLa line Ellenberg lab (EMBL) (Koch et al., 2018)

ZFN SMC4-mEGFP #82-68 HeLa line Ellenberg lab (EMBL) (Walther et al., 2018)

ZFN AURKB-mEGFP #H24 Ellenberg lab (EMBL) (Mahen et al., 2014)

ZFN mEGFP-NUP107 #26-31 Ellenberg lab (EMBL) (Otsuka et al., 2016)

Recombinant DNA

pEGFP-C1-EEA1 Addgene Plasmid #42307

Lawe et al. (2000)

Software and Algorithms

CellProfiler Kamentsky et al. (2011) www.cellprofiler.org

R 3.4.1 R Development Core Team https://www.r-project.org

Matlab 2014a MathWorks www.mathworks.com

BH-tSNE van der Maaten (2014) R implementation: https://github.com/

jkrijthe/Rtsne

Self-organizing map (SOM) algorithm and R

package ‘FlowSOM’

Van Gassen et al. (2015) https://bioconductor.org/packages/release/

bioc/html/FlowSOM.html

R implementation: https://github.com/

lmweber/FlowSOM-Rtsne-example/blob/

master/FlowSOM_Rtsne_example.R.

CellClassifier (Pelkmans) R€amö et al. (2009) https://github.com/pelkmanslab/

CellClassificationPelkmans;

https://www.pelkmanslab.org/?page_id=63

Spot detection and segmentation (Pelkmans) Battich et al. (2013) https://github.com/pelkmanslab/

ImageBasedTranscriptomics

Spot localization pattern analysis (Pelkmans) Battich et al. (2013) https://github.com/pelkmanslab/locpatterns

Population context features calculation

(Pelkmans iBRAIN)

Snijder et al. (2009, 2012) https://github.com/pelkmanslab/iBRAINShared/

tree/master/iBRAIN/CreatePopulationContext
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Lucas

Pelkmans (lucas.pelkmans@imls.uzh.ch).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines Source and Cultivation
Endogenously mEGFP-tagged HeLa cell lines (Kyoto) were obtained from Jan Ellenberg (EMBL, Heidelberg, Germany) and endog-

enously mEGFP-tagged hiPS cells lines were obtained from the Allen Cell Institute (Seattle, Washington, USA) (http://www.allencell.

org/cell-catalog.html).

HeLa cells were cultivated and seeded for experiments in plastic Greiner 96 well plates. hiPS cell lines were cultivated according to

the protocol provided by the Allen Cell Institute, including coating of the plates and the seeding of the cells for the experiment, in

plastic 96 well plates (Greiner).

(https://catalog.coriell.org/0/PDF/Allen/iPSC/AICS_SOP_WTC_CellCulture.pdf). For image-based transcriptomics and protein

quantification 2500 single cells were seeded per well and cultivated for 3 days (2 nights), until they established population context,

and confluency �90%.

METHOD DETAILS

Experimental Design Details
Datasets represented in the figures for all HeLa and hiPS cells measurements contain two replicates. Table S1. also contains addi-

tional two replicates (total 4 replicates) of quantifications for mEGFP tagged HeLa cell lines. Two datasets that belong to mEGFP

tagged HeLa cells are two biological replicates, each of which contains two technical replicates, as it is written within the Table S1.

Number of single cells used for generating the plots or performing statistical tests is written within the figures, and is also available

within the Supplementary Tables, that contain measurements that accompany the figures and are used for generating the plots.

Replicate dataset for each gene was obtained by seeding cells in a two separate wells of a 96-well plate, representing therefore

technical replicate (for both HeLa and hiPS cells). For all mEGFP HeLa cell lines, biological replicate was obtained by seeding each

cell line in a different 96-well plate on a different day, several weeks apart, using different aliquots of frozen cells. No sample size

estimations and no blinding were performed at any stage of the study. Further information on statistical tests is provided in the

respective STAR Methods section.

Labelling of Cells with EdU
HeLa cells were labelled with EdU available from the Click-iT EdU Alexa Fluor 647 Imaging Kit, Thermo Fisher Scientific. Briefly, dilu-

tion of EdU was prepared in the cell culture media DMEM containing no serum, and dispensed into the plates containing growing

cells, using Biomek liquid handling robot. Subsequently, cells were returned to the incubator for 15 additional minutes. After

15 min, media was aspirated, cells fixed, and processed for image-based transcriptomics and antibody staining.

Image-Based Transcriptomics and Antibody Labelling
Prior to combining image-based transcriptomics with imaging of GFP tagged cell lines or antibody labeling, we imaged all GFP

tagged cell lines, subsequently we quantified the measured intensities in green channel, from which we subtracted the background

as described in section below. Briefly, cells were grown for 3 days in 96-well plates, fixed in 4% PFA, permeabilized in 0.2% Triton

X100 for 5 min, and incubated with DAPI for 10 min (for the purpose of nuclei segmentation). Such obtained intensity distributions of

GFP lines was subsequently compared to the intensities obtained after imaging same cells, using same settings of microscope,

which have been also subjected to the whole procedure of mRNA labeling using Affymetrix (now ThermoFisher) kit for bDNA based

single molecule FISH. We observed no significant difference in intensity distributions measured in green channel, if we compared

several proteins that localize in both cytoplasm in nucleus, or primarily in cytoplasm or nucleus, concluding that smFISH procedure

is suitable to be combined with the imaging of GFP or labeling of protein epitopes, and obtained relative protein quantities are

accurate.

Image-based transcriptomics and image processing was performed using open source software CellProfiler and our custommade

Matlab modules available at https://github.com/pelkmanslab/CellProfilerPelkmans/tree/master/Modules, and https://github.com/

pelkmanslab/ImageBasedTranscriptomics/tree/master/CellProfiler/Modules (Battich et al., 2013; Stoeger et al., 2015). Briefly, the

modules have been at first tested locally on several images and obtained segmentation imagesmanually inspected. Upon evaluating

the good segmentation, pipeline was run on the whole image dataset, using ScienceCloud computational infrastructure of University

of Zurich (UZH), or computational cluster Brutus (ETH). The example of the CellProfiler pipeline that containsmodules used to analyze

the images is within the Supplementary Data (ExamplePipeline.mat).

For all cell lines final dilution of the protease was 1:16000. Protease was first diluted 1:8000 in 1xPBS and dispensed in volume of

30uL, prior to which the volume within the well was aspirated to 30uL, such as is recommended in the protocol for bDNA smFISH

(ThermoFisher Scientific, previously Affymetrix). Cells were seeded in 96-well plates and transcript of genes endogenously tagged

with EGFP (in both HeLa and hiPS cells) were labelled in separate wells using primary probe against EGFP sequence and branched

DNA single-molecule fluorescence in-situ hybridization using ViewRNA reagents (Affymetrix). All wash steps were performed on the

Biomek robotic liquid handler. Imaging was done using automated confocal microscope, CellVoyager 7000 (Yokogawa) with the

enhanced CSU-X1 spinning disc (Microlens enhanced dual Nipkow disc confocal scanner, wide view type) and a 40X Olympus
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objective of 0.95 NA and Neo sCMOS cameras (Andor, 2.560 x 2.560 pixels). 12 Z slices with the distance of 1uM were imaged and

maximum projection images (MIP) used for the further image analysis.

Genes that were not endogenously tagged (TFRC, LAMP1, EEA1, VPS35 and ACTB) were labelled with gene specific probes Type

1 using the probes from previously published library: EEA1 (VA1-112193); TFRC (VA1-112208); LAMP1 (VA1-112096); VPS35 (VA1-

112008); ACTB (VA1-10351-01); JUN (VA1-12265); FLY EGFP (VF1-10141); HPRT1 (VA1-11124-01); dapB (VF1-10272) (Battich

et al., 2013). The protein was stained using following primary antibodies: TFRC (purified mouse anti-human CD71 antibody, BD Bio-

sciences), LAMP1 (purifiedmouse anti-humanCD107a antibody, BDBiosciences), EEA1 (purifiedmouse anti-human EEA1 antibody,

clone 16, RUO, BDBiosciences), VPS35 (polyclonal goat anti-human VPS35 antibody, Novus Biologicals), ACTB (mousemonoclonal

anti-actin antibody, ab3280, Abcam), c-JUN (rabbit monoclonal antibody anti-c-JUN (C.238.2)). Antibody labelling was performed

after the sm-FISH protocol, cells were preblocked for 30 min. on room temperature in 2% BSA/ 1xPBS solution. Primary antibodies

were applied for 2h on room temperature, and subsequently washed 4x with 1xPBS. Secondary antibodies were applied for 1h on

room temperature and washed 5x with 1xPBS. Subsequently cells were stained with DAPI for 10 min., washed 3x with 1xPBS than

stained with Succinimidyl Ester stain for 5 min. and finally washed 4x with 1xPBS.

Due to the quenching of EGFP, sm-FISH and Alexa fluorophores by buffer used for EdU Click-iT Kit, cells were first imaged for

DAPI, sm-FISH, protein and Succinimidyl Ester stains. Subsequently, cells we stained for EdU, and the whole plate was reimaged

using same setting on the microscope. Images were realigned based on the segmentations of the nuclear DAPI signal obtained

from the first imaging cycle (using module plugged in CellProfiler pipeline), and subsequently the signal that belongs to EdU was

quantified for each single cell.

Measurement and Quantification of Nuclear Transcripts
Nuclear transcripts have been visualized by applying the fixation protocol of 2% [v/v] glacial acetic acid in 4%PFA for 30min (Battich

et al., 2013). Transcripts were stained using same protocol as for the cytoplasmic bDNA sm-FISH, and the number of transcripts at

the transcription sites were determined by dividing the total intensity of the burst by the average intensity of surrounding single spots.

Subsequently the number of single spots was joined to the number of estimated spots within the burst giving number of total esti-

mated spots per single nuclei (Battich et al., 2015).

EGF Stimulation Experiment
HeLa cells were grown in full growth media DMEM/10%FBS for 48 hr, subsequently the media was exchanged using Biomek robotic

liquid handler, where cells were at first washed 3 times in DMEMwithout serum, and subsequently grown over night in the incubator in

serum depleted media. Next morning cells were stimulated with the EGF (Millipore) at a final concentration of 20 ng/mL. Cells were

stimulated in a retrograde fashion so that the fixation of the whole plate could be performed at once.

Transient Transfection of cDNA
HeLa cells were seeded in 96-well plate and cultivated for 36h prior to the transfection. cDNA coding for EGFP-EEA1 was transfected

using GeneJuice reagent (Novagen) according to the manufacturer protocol and grown for another 24 hr. Cells were subsequently

fixed and stained with bDNA sm-FISH probe against EGFP sequence.

QUANTIFICATION AND STATISTICAL ANALYSIS

Feature Extraction
Area, shape, intensities, and texture (at a scale of 5 pixels) of cells and nuclei were extracted using open source software CellProfiler

(Carpenter et al., 2006). Correction of uneven illumination and subtraction of camera dependent invariant backgroundwas performed

using custom CellProfiler modules as previously described (Battich et al., 2013; Stoeger et al., 2015), https://github.com/

pelkmanslab. Briefly, large number of acquired images per channel can be used to learn pixel-wise illumination and signal gain

biases. For each pixel, standard deviation and mean intensity value is calculated for a given channel. Illumination bias is than

corrected by performing Z-scoring per pixel and reverting the values to the intensity values. Population context features were

measured using previously publishedmodule implementedwithin the iBRAIN pipeline that calculates Local Cell Density andDistance

to Edge for each single cell, after completion of the CellProfiler pipeline. Code for generation of population context features can be

found on our Github repository https://github.com/pelkmanslab/iBRAINShared/tree/master/iBRAIN/CreatePopulationContext

(Snijder et al., 2012). Number of directly adjacent cells and size of extracellular space with overlap to other cells was extracted using

custom CellProfiler module, extending the cell outline by 10 pixels.

Cells that had multiple nuclei, border cells, and missegmented cells were discarded using supervised machine learning (SVM) tool

CellClassifier (R€amö et al., 2009), available at https://www.pelkmanslab.org/?page_id=63. Briefly, images with overlayed segmen-

tations of cells and their nuclei have been loaded in Matlab GUI of CellClassifier and classifier was manually trained by selecting cells

with wrongly segmented nucleus as a class 1, and correctly segmented nucleus as class 2. Subsequently classifier was tested on a

randomly selected images and applied to the whole dataset. Features of nuclear shape and DAPI intensity were used for the clas-

sification. Similarly, features of cellular shapewere used to train classifier and recognize correctly segmented cells. Classification into

four cell cycle stages was performed similarly, using SVM to classify cells in S phase (based on the intensity and texture features of

the EdU staining) and M phase (based on the nuclei shape and DAPI intensity) and using Gaussian mixture model to distinguish G1
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and G2 cells. Briefly, cells classified in S phase and M phase were excluded from the dataset, and histogram of integrated nuclear

DAPI intensity consisted of two separated Gaussians, where the median of second Gaussian was at the double of the intensity of the

median of the first Gaussian. Low-intensity Gaussian were G1 cells, and high-intensity Gaussian were G2 cells, sorted than subse-

quently into two classes by k-means clustering (Gut et al., 2015).

hiPS cells grow in colonies, where central regions contain cells overlapping in 3D. Such regions were not accurately segmented in

2D, and cells that have been inaccurately segmented we excluded using SVM classifier. For the same reason, we did not calculate

and use population context features for linear models (local cell density and distance to edge), for hiPSC datasets.

Background Subtraction for mEGFP Tagged HeLa Cells
The expression from the endogenous locus results in lower intensities in the green channel in contrast to the antibody coupled fluo-

rophores, requiring therefore longer exposure times (700ms), that led to a detection of background. We have therefore performed

background subtraction. Precisely, in the same experimental plate we have seeded parental HeLa line (non-tagged) as a negative

control for the sm-FISH labeling with EGFP and DapB probes. Such cells have been imaged with same setting for all channels. Sub-

sequently the intensities obtained after microscope background subtraction have been observed to linearly scale with the cell area

feature, summing the plate and the cell-based background into one unique single cell value. Matlab function ‘‘fitlm’’ was used to fit

linear model using cell area as a predictor for the integrated background intensity in parental HeLa cells, and obtained model was

used to predict the background for all measured single cells across the plate. Predicted values have been than subtracted

from the total measured intensities and obtained values used for the further analysis, as a background corrected relative protein

quantities (AU).

Selection of Genes for the Transcript and Protein Quantification
Initial gene selection contained several genes that have been measured, and subsequently discarded due to the low intensity in the

green channel, that upon background subtraction led to a large number of single cells having negative values for the protein intensity.

Also, if their final mean intensity per cell was lower than 3 standard deviations from mean of the intensity in background subtracted

negative control, we considered them to be too close to the background and they were not further analyzed. Those are NCAPH2

(HeLa cell line) and PAX and DSP (hiPS cell lines).

Generation of Components for Transcript and Protein Abundance Prediction
Dataset was first Winsorized at the 0.5% and 99.5% percentiles, subsequently all the features were Z-scored on per-well and again

per-gene basis (for the analysis where both replicates have been pooled together). Generalized linear models using transcript abun-

dance as a predictor for the protein abundance were built using ‘‘fitlm’’ function of Matlab with robust fit option on. Multivariate linear

regression models were built using ‘‘plsregress’’ function of Matlab, where number of components was optimized on per-gene basis

using 100 cross validations and based on the decrease in estimated mean squared prediction error (MSE). For majority of the multi-

variate linear models (PLSR) models number of required components was in the range of 5-10. Additionally, optimal number of

components led to a good data prediction without overfitting of the training set, that was estimated on the similarity of the explained

variance for both training and test dataset.

Cell Cycle Significance Calculation
To examine the significance of the association (contingency) between the cell cycle classification and ‘outlier’ classification for cells

classified as outliers, we used Fisher’s exact test, specifically function ‘FisherExactTest’ within package FisherExactTest from

Matlab (https://ch.mathworks.com/matlabcentral/fileexchange/24379-fisher-s-exact-test-with-n-x-m-contingency-table).

To calculate the fraction of outliers in un-expected cell-cycle stage, we have first estimated the number of expected outliers in each

cell-cycle stage based on the measured cell cycle stage proportions and those calculated for the whole population of single cells, for

each gene separately. Subsequently, we subtracted the differences in expected and measured number of outliers in each cell-cycle

stage and used sum of their absolute values divided by the total number of outliers (for each gene) as a measure of proportion.

Embedding of Single Cells in Two Dimensional bh-tSNE Feature Space
Bh-tSNE algorithm for dimensionality reduction was used within the R wrapper package ‘Rtsne’, https://github.com/jkrijthe/Rtsne,

that can be installed from CRAN or github repository. For BH-tSNE embedding we used cells coming from both replicates for each

gene. Used features were Z-score normalized for all datasets (all EGFP tagged HeLa cells, all antibody labeled HeLa cells, and all

hiPS cells). Each point within the BH-tSNE plots represents a single cell.

Features used for tSNE embedding are represented in the Figure S4.

Comparison of Distributions Using Kolmogorov-Smirnov Statistics and F-Test
The distributions of the replicates or measured and predicted datasets were compared usingMatlab function ‘‘kstest2’’. To compare

multiple sample distributions using statistic of the maximum difference in probability of cumulative distributions extended Kolmo-

gorov-Smirnov test was used, available in open source ‘‘KS statistic’’ package (https://ch.mathworks.com/matlabcentral/

fileexchange/47900-ks-statistic-zip). To calculate p values for F-test, function ‘vartest2’ of Matlab was used, with the default bound-

ary of significance of 5%.
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Classification of Cells Based on the Transcript Spatial Pattern
Probabilities to belong to a specific spatial class was calculated based on the set of spatial features extracted using our custom

CellProfiler module. Briefly, we first calculated the primary set of features using module MeasureLocalizationOfSpots.m that is avail-

able on our Github https://github.com/pelkmanslab/ImageBasedTranscriptomics/tree/master/CellProfiler/Modules. Subsequently,

for every cell and set of primary spatial features, cellular features were obtained by the customMeasureChildren.m CellProfiler mod-

ule, available at https://github.com/pelkmanslab/ImageBasedTranscriptomics/tree/master/CellProfiler/Modules (Battich et al.,

2013). Further, only cellular features describing mean and sd of spatial features for each single cell were used to perform hierarchical

clustering of cells using Euclidean distance space andWard’s linkage method. Cells were grouped in 50 bins, and 1000 samplings of

100 cells was performed using script available at https://github.com/pelkmanslab/locpatterns. To classify clusters from those

different samplings into spatial pattern types the centroid for each cluster was computed (using 7 centroids), and distance to a num-

ber of randomly sampled cluster centroids measured. The localization type of the cell was than defined as that of its closest centroid,

and probability as a fraction of times a cell was defined to belong to a particular localization type. To discretize the class assignment

based on the probabilities, threshold of 0.6 was used, where each cell was assigned to a class 1, class 2 or class 3, only when the

probability was higher than the threshold (Figures 5D–5F). Such discretization was used mainly for visualization purpose, while all

other plots represent calculations based on exact probabilities.

Binning of Cells Based on Cellular Features
Binning of cells in JUN experiment was performed as following: both replicates have been used, 12000 cells taken randomly from

each timepoint (apart from the timepoint 210 min.) and cells have been clustered based on their DNA content, nuclear and cellular

size and local cell density features, using Self Organizing Map algorithm, and R package ‘FlowSOM’

(https://bioconductor.org/packages/release/bioc/html/FlowSOM.html) (VanGassen et al., 2015). The implementation was used as

described in https://github.com/lmweber/FlowSOM-Rtsne-example/blob/master/FlowSOM_Rtsne_example.R. All the features

have been normalized bymean Z-score normalization across all the single cells. Default setting of FlowSOM initially created 100 clus-

ters, after which we discarded clusters if they contained less than 20 cells from any of the timepoints, leaving 79 clusters. Upon ob-

taining index that defined the cluster assignment for each cell, we calculated the median values for the features of interest, such as

total DNA content, cell and nuclear size, local cell density, total protein content as well as mRNA count in the nucleus and cytoplasm,

and protein content. Upon obtaining median values we compared the distributions of 79 bins to distributions of all single cells. Also,

upon extracting the bin assignment indices, we have randomized them and calculated the medians of all features based on random

grouping of cells. When we compared KS statistics for bins based on SOM, or bins with randomly assigned cells, we observed that

SOM assigned bins resemble close the distribution of the whole population, which was not the case for randomly assigned cells.

Usingmedians for mRNA quantity in the nucleus and cytoplasm, and protein intensity we generated pseudo time-traces (Figure 4),

and we calculated the deltas that described the change in quantities of all three molecular species in time. Precisely, calculation of

deltas (changes) in nuclear mRNA (export), cytoplasmic mRNA (import and decay), as well as deltas (changes) of protein quantities

(translation) was calculated as an absolute value difference (between values measured at two timepoints for which delta is to be

calculated), and divided by time in minutes (time difference between the two timepoints for which delta is to be calculated) for

each cluster and expressed as a change in quantity per minute:

Dx =

�
�
�
�

minðxÞ �maxðxÞ
timeðminutesÞ

�
�
�
�
:

BH-tSNE embedding of SOM obtained clusters was done using median bin values of cell autonomous features including those

used for generation of SOMs (’Intensity_SubsBlue_Nuclei_1_IntegratedIntensity’,

’Intensity_SubsBlue_Nuclei_2_MeanIntensity’,

’Intensity_SubsFarRed_Cells_1_IntegratedIntensity’,’Intensity_SubsFarRed_Nuclei_1_IntegratedIntensity’,

’Texture_5_SubsFarRed_Cells_1_AngularSecondMoment’,

’Texture_5_SubsFarRed_Nuclei_1_AngularSecondMoment’,

’AreaShape_Nuclei_1_Area’, ’AreaShape_Nuclei_2_Eccentricity’

’AreaShape_Cells_1_Area’,’AreaShape_Cells_2_Eccentricity’,

’DistanceToEdge_Nuclei_1_LCD_Border-4_Size864_Sigma144_Shrink18_TotPSF401’,

’LocalCellDensity_Nuclei_1_LCD_Border-4_Size864_Sigma144_Shrink18_TotPSF401’). Subsequently median values of all other

features and calculated deltas have been projected on the BH-tSNE plots.

Analysis of Signal Cross-Correlation
Analysis of JUN experiment was performed using Signal Processing Toolbox ofMatlab. Precisely, the lags between signals of nuclear

and cytoplasmic transcript abundance, and transcript and protein abundance and the cross-correlation of signals was calculated

using ‘‘xcorr’’ function with ‘‘coeff’’ option (https://ch.mathworks.com/help/signal/ref/xcorr.html). Lags at which maximum cross-

correlation was observed (time at which two peaks overlapped) were than transformed to time based on where the peak of each

quantity occurs.
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Figure  S1.  Image-Based  Quantification  of  mRNA  and  Protein  Levels  and  Cell-  to-
Cell  Variability  in  Their  Abundance,  Related  to  Figure  1.  

(A)  Cumulative  probability  distributions  of  integrated  background  corrected  single  
cell   intensities   in   green   channel   of   few   representative   GFP   endogenously  
tagged  HeLa  cell  lines  non-  or  subjected  to  the  sm-FISH  protocol.  Kolmogorov-
Smirnov  statistics  was  calculated  on  Z-scored  values  and  represented  on  the  
plots.  

(B)  Background   subtraction   based   on   linear   fit   of   measured   intensity   in   green  
channel  in  parental  HeLa  cell   line.  Liner  model  obtained  was  used  to  predict  
the  background  values  based  on  cell  size,  after  subtraction  of  the  background  
the   values  of  protein   intensity   in   negative   control   are   distributed  around   the  
zero.  

(C)  Correction  of  the  measured  intensities  for  all  the  single  cells  HeLa  cells  tagged  
with  mEGFP.    

(D)  Pearson’s  correlation  of  two  replicates  of  measured  cytoplasmic  mRNA  count.  
(E)  Pearson’s  correlation  of  two  replicates  of  measured  protein  quantity  (integrated  

protein  intensity  per  cell  (AU)).  
(F)  Kolmogorov-Smirnov   statistic   comparing   the  measured   shapes  of   single-cell  

protein   and   transcript   abundance   distributions   of   two   technical   replicates.  
Green  color:  all  genes  measured  in  endogenously  tagged  HeLa  cell  lines,  blue:  
all   genes   measured   using   antibody   labeling   in   HeLa   cells,   red:   all   genes  
measured  in  endogenously  tagged  hiPS  cells.  

(G)  Correlation  of  calculated  mRNA-protein  Pearson’s  correlation  coefficient  of  two  
technical  replicates,  for  all  genes  that  were  measured  in  HeLa  and  hiPS  cells.  

(H)  Scaling  of  measured  protein  quantities  with  the  Pearson’s  correlation  coefficient  
of  mRNA  and  protein  for  all  the  genes.  Size  of  the  dot  represents  the  coefficient  
of  variation  in  protein  and  mRNA,  respectively.        

(I)   Scaling   of   cytoplasmic   measured   mRNA   quantities   with   the   Pearson’s  
correlation  coefficient  of  mRNA  and  protein   for  all   the  genes.  Size  of   the  dot  
represents  the  coefficient  of  variation  in  protein  and  mRNA,  respectively.        

(J)  Scaling  of  mRNA-protein  correlation  with  the  coefficient  of  variation  in  protein  
and  mRNA  abundance.  

(K)  Scatter  plots  between  mRNA  and  protein  abundance.  Each  plot  has  depicted  
R2  of  the  linear  fit  using  mRNA  as  predictor  for  the  protein  quantity,  and  total  
number   of  measured   cells   (TCN).   Linear   fit  was   performed   on   pooled   cells  
coming  from  both  of  the  replicates,  that  are  represented  by  the  blue  color  dots.  
Grey  color  dots  represent  randomized  values  of  protein  quantity  for  the  given  
mRNA  count.  

(L)  Distributions  of  cytoplasmic  mRNA  count  (upper)  and  protein  quantity  (lower)  
for  all  the  genes  measured  in  HeLa  cells  and  hiPS  cells.    

(M)Coefficient  of  variation  plotted  against  the  mean  spot  count  per  cell.  
(N)  Coefficient  of  variation  plotted  against  the  mean  integrated  protein  intensity  per  

cell  (AU).    
(O)  Correlation   of   cell-to-cell   variability   (CV)   in   mRNA   and   protein   abundance  

across  all  genes.    
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Figure  S2.  Explaining  Variability  in  Protein  Abundance  and  Cytoplasmic  mRNA  
Abundance  in  Single  Cells.  Related  to  Figure  2.  

(A)  BH-tSNE  embedding  of  single  HeLa  cells  and  the  spread  of  the  cells  classified  
as  “outliers”.  Upper  row  of  plots:  all  HeLa  cells  labeled  with  antibodies  pooled  
together,  lower  row  of  plots:  all  mEGFP  tagged  HeLa  cells  pooled  together.  

(B)  Upper  bar-plot:  classification  of  all  the  HeLa  cells  in  different  stages  of  a  cell-
cycle,  as  projected  on  BH-tSNE  in  (A),  middle  bar-plot:  percentage  of  “outliers”  
within  the  population  of  all  measured  single  cells,  lower  bar-plot:  classification  
of  “outlier”  fraction  in  different  cell  cycle  stages.  

(C)  Outliers  projected  on  BH-tSNE  plots  as  described   in  Figure  2B.  Text  on   the  
right:  cellular  features  used  for  BH-tSNE  based  dimensionality  reduction.    

(D)  BH-tSNE  embedding  of  hiPS  cells.  Outliers  for  separate  genes  are  projected  
on  lower  tSNE  plots.  Text  on  the  right:  Cellular  features  used  for  tSNE  based  
dimensionality  reduction.      

(E)  Schematic  representation  of  changes  that  can  impact  the  protein-mRNA  ratio  
during  the  cell  cycle,  leading  to  the  appearance  of  cell-cycle  specific  outliers  in  
mRNA-protein   scatter   plots.   mRNA   and   protein   quantities   can   change  
depending   on   genome   content,   cellular   size,   or   translational   efficiency   of  
ribosomes.    

(F)  Ratio  of  mean  translational  efficiency  of  cells  in  G2  and  G1  cells  plotted  against  
the  ratio  of  the  mean  mRNA  content  in  G1  and  G2  cells,  calculated  from  the  
data  provided  in  work  of  Tanenbaum  et  al.  (2015).  In  case  when  mRNA  content  
is  higher  in  G2  cells  (x  axis  values  lower  than  1),  translational  efficiency  in  G2  
cells  can  be  higher  leading  to  higher  protein  levels  than  mRNA  (eg.  PLK1).  

(G)    Ratio  of  mean  protein  levels  (integrated  intensity  per  cell  (AU))  of  cells  in  G2  
and  G1  cells  plotted  against  the  ratio  of  the  mean  mRNA  content  in  G1  and  G2  
cells,   calculated   from  data   obtained   in   this   study.   Calculated   ratios   for   both  
datasets  (F  and  G)  were  represented  within  the  Figure  2F.  
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Figure  S3.  Explaining  Variability  in  Protein  Abundance  and  Cytoplasmic  mRNA  
Abundance  in  Single  Cells.  Related  to  Figure  3.      

(A)  Examples  of  weights   for   the   first  3  principal  components  of   full  PLSR  model  
used  to  explain  variability  in  protein  abundance  in  HeLa  cells.  (Model  3  in  Figure  
3B).  Above  the  plots  is  the  total  cell  number  (TCN)  used  as  a  training  set  for  
the  models  (technical  replicate  1)  and  as  a  test  set  for  the  models  (technical  
replicate   2).   Right   side   of   the   plots   represents   the   features   used   to   create  
principal  components,  colormap  of  the  legend  corresponds  to  the  colormap  on  
the  plots.  Weights  are  min-max  normalized  prior  to  the  plotting.  Total  number  
of   principal   components   for   every   model   together   with   the   KS   statistics   is  
provided  in  Table  4.    

(B)  Examples  of  weights  for  the  first  3  components  of  PLSR  model  used  to  explain  
variability  in  protein  abundance  in  hiPS  cells.    (Model  3  in  Figure  S3C).  Total  
cell  number  (TCN)  used  as  a  training  dataset  (technical  replicate  1)  and  test  
dataset  (technical  replicate  2)  is  written  above  each  plot.    

(C)  Left:  Explained  variance  of  cytoplasmic  mRNA  using  multivariate  linear  model  
(PLSR)   based   on   cellular   features   reduced   to   principal   components.   Right:  
Explained  variance  of  protein  content  based  on  linear  model  using  only  mRNA  
as  predictor  variable  (LM)  or  various  cellular  features  reduced  to  the  principal  
components  for  multivariate  linear  models  (PLSR).    

(D)  Kolmogorov-Smirnov  statistic  comparing  the  measured  and  predicted  shapes  
of  single-cell  protein  abundance.  Left:  KS  distances  for  models  on  HeLa  cells.  
Right:  KS  distances  for  models  on  hiPS  cells.  The  exact  values  are  provided  in  
Table  4.  

(E)  Scatter  plot  for  measured  and  predicted  protein  content  (left)  or  mRNA  content  
(right)  for  EEA1  gene  expressed  from  ectopically  introduced  plasmid  into  HeLa  
cells   (transfection).   Very   right:   Explained   variance   for   all   the   PLSR  models  
across  six  tested  sets  of  transfected  HeLa  cells.  Calculated  values  are  provided  
in  Table  4.  

(F)  Example   images  of  HeLa  cells   transfected  with   the  cDNA  coding   for  EGFP-
EEA1.    
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Figure  S4.  mRNA-protein  correlations  in  EGF  gene  induction  system.  Related  to  
Figure  4.  

(A)  Pearson’s  correlation  of  JUN  protein  and  transcript  abundance  in  the  cytoplasm  
and   the   nucleus   for   two   technical   replicates   of   EGF   stimulation.   Very   right:  
coefficient   of   variation   for   all   three   molecular   species:   nuclear   mRNA,  
cytoplasmic  mRNA  and  protein.  

(B)  Distributions  of  JUN  transcript  abundance  in  the  nucleus  and  cytoplasm,  and  
protein  abundance  across  all  the  timepoints.    

(C)  Correlation   between   JUN   cytoplasmic   mRNA   abundance   and   protein  
abundance   for   different   timepoints   of   EGF   stimulation   in   HeLa   cells.   Both  
technical   replicates  are  pooled   together  and  plotted,   total  cell  number  (TCN)  
together  with  the  R2  are  written  on  the  plots.  
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Figure  S5.  mRNA-protein  correlations  of  JUN  in  EGF  gene  induction  system  and  
variability  in  spatial  positioning  of  mRNA.  Related  to  Figure  4  and  Figure  5.    

(A)  Bar-plots  representing   the  proportions  of  cells  with  single  or  double  genome  
content   and  mitotic   cells   within   both   technical   replicates   of   EGF   stimulation  
experiment  pooled  together.    

(B)  Cumulative   distributions   for   all   the   single   cells   for   all   of   the   timepoints   for  
features  used  to  cluster   the  cells  using  self-organizing  maps.  Only  upon  210  
minutes  of  EGF  stimulation  cumulative  distributions   for  nucleus  and  cell  size  
change   (as   pointed   by   the   red   arrow   on   the   plots).   Kolmogorov-Smirnov  
statistics  was  calculated  to  compare  the  similarity  of  distributions  of  all  4  cell  
phenotypic  features  and  is  written  within  the  plots.    

(C)  Scheme   of   the   workflow   used   for   binning   of   single   cells.   Right:   SOM   tree  
representing  100  clusters  of  single  cells.  Each  cluster  pie-chart  represents  the  
values  of  4  cell  phenotypic  features  for  cells  that  are  within  the  cluster.  

(D)  Kolmogorov-Smirnov   statistic   comparing   the   shapes   of   features   for   all   the  
single  cells  used  for  SOM  clustering  and  shape  of  distribution  obtained  upon  
clustering  (based  on  calculated  medians  for  each  of  the  used  feature).  Left:  bar-
plots   representing   the   KS   distances   of   single   cells   and   clusters   for   all  
timepoints,   based   on   SOM   clustering.   Right:   bar-plots   representing   the   KS  
distances   of   single   cells   and   clusters   for   all   timepoints,   based   on   randomly  
assigned   cluster   number.  Distributions   obtained   for   clusters  where   cells   are  
randomly  clustered  are  not  any  more  similar  to  the  distributions  observed  within  
the  whole  population  of  cells.        

(E)  Kolmogorov-Smirnov   statistic   comparing   the   shapes   of   nuclear   mRNA,  
cytoplasmic   mRNA   and   protein   quantities   for   all   the   single   cells   used   for  
clustering   and   shape   of   distribution   obtained   upon   clustering   (based   on  
calculated  medians  for  each  of  the  used  feature).  Green  line:  values  obtained  
when   comparing   clusters   of   randomly   assigned   single   cells   to   the   whole  
populations,  grey  line:  values  obtained  when  comparing  clusters  of  SOM  based  
clusters  to  the  whole  populations.  

(F)  Cross-correlation  of   trajectories  obtained  by  SOM  based  clustering  of  single  
cells  as  described  in  (D)  and  (E)  

(G)  Hierarchical  clustering  of  SOM-based  clusters,  based  on  median  DNA  content,  
cell  size,  and  local  cell  density  features.  Deltas  in  nuclear  mRNA  production,  
cytoplasmic  mRNA  appearance  and  decay  and  protein  appearance  are  plotted  
above  the  clustergram.  Lines  represent  “rloess”  fit,  for  purpose  of  visualization  
of   trends   in   changes   of   delta   with   the   change   in   cell   size,   and   population  
context.  

(H)  Time  delays   for  nuclear  and  cytoplasmic  mRNA  and  cytoplasmic  mRNA  and  
protein  for  all  the  clusters.  Clusters  are  same  as  represented  in  the  Figure  4.      

(I)   Z-scored  median  quantities  of  nuclear  mRNA,  cytoplasmic  mRNA  and  protein  
during   the   time  of   their  expression.  At  all   timepoints   larger  cells  have  higher  
amplitudes  of  response  in  all  three  species.    

(J)  mRNA  count  of  HPRT1  does  not  change  upon  starvation  and  EGF  stimulation.  
(K)  Representative   images   for  HPRT1  mRNA   in  HeLa  cells  at  0,  30,  40  and  60  

minutes  of  EGF  stimulation.  
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