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SUMMARY

Membrane-less organelles (MLOs) are liquid-like sub-
cellular compartments that form through phase sepa-
ration of proteins and RNA. While their biophysical
properties are increasingly understood, their regula-
tion and the consequences of perturbed MLO states
for cell physiology are less clear. To study the regula-
tory networks, we targeted 1,354 human genes and
screened formorphological changes of nucleoli, Cajal
bodies, splicing speckles, PML nuclear bodies (PML-
NBs), cytoplasmic processing bodies, and stress
granules. By multivariate analysis of MLO features
we identified hundreds of genes that control MLO
homeostasis.We discovered regulatory crosstalk be-
tween MLOs, and mapped hierarchical interactions
between aberrant MLO states and cellular properties.
We provide evidence that perturbation of pre-mRNA
splicing results in stress granule formation and reveal
that PML-NB abundance influences DNA replication
rates and that PML-NBs are in turn controlled by
HIP kinases. Together, our comprehensive dataset
is an unprecedented resource for deciphering the
regulation and biological functions of MLOs.

INTRODUCTION

Membrane-less organelles (MLOs) are subcellular compart-

ments in the cyto- and nucleoplasm of eukaryotic cells. MLOs

contain proteins with intrinsically disordered regions that

together with RNA phase separate from the surrounding milieu

(Banani et al., 2017; Brangwynne et al., 2009). These local con-

centrations of proteins and RNAs have two major functional im-

plications. First, MLOsmay concentrate components to facilitate

biochemical reactions. Nucleoli, for instance, are nucleated at

sites of actively transcribed ribosomal RNAs and control most

aspects of ribosome biogenesis (Sirri et al., 2008). Likewise,

Cajal bodies (CBs) are small nuclear domains that form on active

loci of small nuclear (sn)RNA transcription and are typically pre-

sent in highly proliferative cells that have a high demand in

splicing (Cioce and Lamond, 2005; Machyna et al., 2013). The

second functional implication of MLOs is that they could act as

dynamic buffers for both protein and RNAs (Saunders et al.,
M

2012; Stoeger et al., 2016). Nuclear splicing speckles, for

instance, are enriched in spliceosomal small nuclear ribonucleo-

protein particles (snRNPs) and components of the pre-mRNA

splicing machinery but are not considered as sites of pre-

mRNA splicing. Instead, they might constitute storage sites

of splicing factors to supply them to adjacent active transcrip-

tion sites according to need (Spector and Lamond, 2011). Anal-

ogous to splicing speckles, nuclear bodies that form around

promyelocytic leukemia protein (PML-NBs) harbor proteins

involved in transcriptional regulation, DNA damage response,

and apoptosis and are considered as storage sites and hubs

for protein modification (Bernardi and Pandolfi, 2007; Hsu and

Kao, 2018; Lallemand-Breitenbach and de Thé, 2010). Last,

cytoplasmic processing bodies (PBs) form around translationally

repressed mRNAs and were initially considered as sites of

mRNA degradation as they contain numerous proteins associ-

ated with mRNA deadenylation, decapping, and the 50-to-30

mRNA decay pathway (Luo et al., 2018; Sheth and Parker,

2003). However, there is increasing evidence that mRNA degra-

dation might not occur in PBs and that PBs are rather storage

sites for repressed mRNAs that can be released and translated

according to the cell’s needs (Horvathova et al., 2017; Hubsten-

berger et al., 2017).

Most constitutive MLOs are regulated according to the phys-

iological state of the cell. Size and abundance of MLOs change

along the cell cycle, and morphology and composition of

MLOs are altered upon stress (Boulon et al., 2010; Courchaine

et al., 2016; Dellaire and Bazett-Jones, 2004). One key factor

that contributes to MLO formation is the concentration of both

protein and RNA components. Active rDNA transcription, for

instance, is essential for nucleolar assembly (McCann and Base-

rga, 2014), and depletion of proteins involved in ribosome

biogenesis leads to diminished nucleolar number, as discovered

by a recent genome-wide small interfering RNA (siRNA) screen

(Farley-Barnes et al., 2018). Another key factor in the assembly

of MLOs are posttranslational modifications of proteins, such

as phosphorylation, that can alter the number of transient inter-

actions betweenMLO components and thus influence the phase

separation of MLO scaffolds or the recruitment of individual

components (Bah and Forman-Kay, 2016; Dundr and Misteli,

2010; Hebert, 2013; Hernandez-Verdun, 2011). However, only

few kinases and phosphatases have been identified as MLO

regulators so far. We previously discovered that DYRK3 kinase

controls the dissolution of stress granules upon stress relief

likely by phosphorylating multiple RNA-binding proteins and is

required for splicing speckle disassembly in pre-mitotic cells
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(Wippich et al., 2013; Rai et al., 2018). Similarly, MBK-2, the

C. elegans homolog of DYRK3, controls the dissolution of

P-granules (Wang et al., 2014) and overexpression of the human

dual-specificity kinases CLK and DYRK1A leads to a phosphor-

ylation-dependent disassembly of splicing speckles (Alvarez

et al., 2003; Sacco-Bubulya and Spector, 2002).

Here, we present a parallel image-based RNAi screening

approach with single-cell resolution, in which we targeted 1,354

genes including the kinome and phosphatome, aswell asmultiple

known MLO components to uncover regulators of six major

MLOs in human cells, similar to an approach we previously

applied to membrane-bound organelles (Liberali et al., 2014).

We applied computer vision and machine-learning methods to

quantify the morphological changes of nucleoli, CBs, splicing

speckles, PML-NBs, cytoplasmic PBs, and stress granules

(SGs) in thousands of single cells per perturbation. Single-cell

clustering allowed us to identify more than 500 genes involved

in multiple biological processes that regulate one or more

MLOs. We identified gene perturbations that provoke the assem-

bly of SGs and discovered a link between perturbation of pre-

mRNA splicing and SG formation. Moreover, our approach

allowed us to uncover co-occurrence of perturbed MLO states

and their functional consequences on the cellular state. In partic-

ular, we found that the abundance of PML-NBs controls the rate

of DNA replication, and that size and composition of PML-NBs

are regulated by the dual-specificity kinases HIPK1 and HIPK2.

RESULTS

Image-Based RNAi Screens on Six MLOs with
Single-Organelle Resolution
To uncover the regulatory complexity underlying the homeosta-

sis of MLOs, we targeted 1,354 human genes with pools of three

siRNAs per gene and stained the cells against key marker pro-

teins of nucleoli, CBs, PML-NBs, splicing speckles, PBs, and

SGs (Figures 1A and 1B). The gene library contained protein

kinases and phosphatases, and known MLO components that

are modified by phosphorylation (Figures 1C and S1A; Table

S1). After imaging thousands of cells per condition, we applied

computer vision approaches to segment nuclei and cells and ex-

tracted multiple single-cell features such as size and shape, or

protein and DNA content. We used support vector machine clas-

sification (R€amö et al., 2009) for quality control and data cleanup

on multiple levels (Figure S1B). We fully excluded 31 perturba-

tions (2.3%of the gene library) that strongly impaired cell viability

(Figure S1C). Cell numbers showed no plate position bias, and

both cell numbers and cell-cycle classifications were highly

reproducible between the screens (Figures S1D–S1F). 103

gene perturbations (7.6% of the gene library) displayed signifi-

cantly altered fractions of cells in G1, S, and G2 in all three

screens along with reduced fitness (Figures S1G–S1I). In order

to quantify MLO morphology in each of the single cells, we

used a custom pixel classification-based software to accurately

segment individual MLOs across a wide range of intensities,

sizes, shapes, and background signals (Figures 1D and 1E).

We combined segmented MLOs per cell and extracted pheno-

typic features (see STAR Methods). All cell and MLO intensity

measurements were corrected for plate positional staining
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biases on the single-cell level. Finally, we confirmed that the

resulting numbers of MLOs per cell derived from more than

700,000 unperturbed cells were in agreement with previous re-

ports (Figure S1J; Mao et al., 2011).

Identification of Gene Perturbations with Aberrant MLO
Morphologies
The number and morphology of MLOs is to a large extent deter-

mined by the cell cycle and thus highly heterogeneous even in

unperturbed cell populations. To account for this cell-to-cell vari-

ability, we analyzed the screens by means of unsupervised

clustering of single cells based on their morphological MLO fea-

tures (Figure 2A; STAR Methods; Van Gassen et al., 2015). Each

MLO was analyzed separately. For instance, about 3.7 million

single cells from unperturbed and perturbed conditions of the

nucleoli screen were analyzed together and clustered into 30

phenotypic nodes according to their nucleolar features (Figures

2B and S2A).

First, we explored the cell-cycle-dependent MLO heterogene-

ity of unperturbed cells using cell-cycle trajectories (CCTs) (Gut

et al., 2015). CCTs are inferred from the cellular state information

of fixed cell populations and reflect cell-cycle progression. We

mapped features describing the cellular state as well as features

of MLOs on the CCTs (Figures 2C and S2B–S2D) and observed

their largest fluctuations during S phase. The intensity of the

nucleolar marker Nucleophosmin (NPM), for example, transiently

drops in early S phase cells but recovers toward late S phase

(Figure 2C), a phenomenon that can not be revealed by simply

binning cells into G1, S, and G2 phases (Figure S2E). Consis-

tently, unperturbed cells in early S phase were assigned to

different phenotypic nodes fromunperturbed cells in late S phase

(Figure 2D). These data underscore the high quality of our

screens and the sensitivity of our single-cell-clustering approach

to distinguish even subtle phenotypic changes of MLOs.

Next, we calculated the median MLO feature values from all

perturbed and unperturbed cells that were sorted into one

phenotypic node and subsequently clustered the phenotypic

nodes of each MLO (Figures 3A and S3A–S3D). When we

analyzed how cells from control populations distribute over the

nodes, we found that unperturbed cells primarily enrich in nodes

with intermediate feature values and are absent in nodes with

rather extreme MLO features (Figures 3B and S3A–S3D; Table

S2). In order to identify gene perturbations that drastically alter

MLOmorphology, we then defined two globally perturbed states

for each MLO, namely, an increased and a decreased state,

which each contain cells from one or more phenotypic nodes

(see STAR Methods). Notably, exclusively for P-bodies and

nucleoli, wewere able to discern a third perturbedMLO state, re-

flecting the absence of MLOs similar to the decreased state but

with elevated levels of the marker proteins localizing diffuse in

the cyto- or nucleoplasm, respectively. We then calculated for

each gene perturbation the fraction of single cells that was clus-

tered into the nodes belonging to each of the two or three per-

turbed MLO states and used these values for further analysis

(Figures 3B and S3A–S3D; Table S1). For instance, 72% of

NPM1 knockdown cells were found in nodes of the perturbed

state ‘‘decreased NPM,’’ while the remaining cells were clus-

tered into nodes with intermediate nucleolar features that do
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Figure 1. Image-Based RNAi Screens with Single-Organelle Resolution

(A) Images of unperturbed HeLa cells stained with antibodies against the indicated marker proteins of the six screened MLOs. Scale bars, 20 mm.

(B) Overview of the experimental setup and the computational workflow.

(C) Network view of the molecular function of the 1,354 screened genes. Node sizes represent the number of genes in the library with the indicated GO term, and

nodes are connected (gray lines) when at least five genes overlap.

(D) Grayscale images of unperturbed cells stained with antibodies against the indicatedMLOmarkers. Cell segmentation is shown in blue andMLO segmentation

in red. Scale bars, 20 mm.

(E) Grayscale images of control and perturbed cells stained with antibodies against NPM. Scale bar, 20 mm.

See also Figure S1.
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not reflect a perturbed state. In contrast, downregulation of

RPL11 results in ‘‘increased nucleoli’’ for 97% of the cells.

Gene perturbations resulting in perturbed MLO states for frac-

tions higher than 2.5 SDs from themean across the whole screen

were then considered as hits (Figures 3C–3G). For all MLOs, the

gene perturbation of the respectivemarker protein was identified
among the highest scoring hits in the ‘‘decreased MLO marker’’

state. Importantly, our single-cell-clustering analysis has the

potential to identify more than the perturbed MLO states por-

trayed here. For instance, node 5 of the Cajal body (CB) screen

contains cells with fragmented CBs (high CB numbers without

altered CB intensities), and node 11 of the splicing speckle
Molecular Cell 72, 1–15, December 20, 2018 3
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Figure 2. Single-Cell Clustering Accounts for Cell-Cycle-Dependent

Heterogeneity in MLO Morphology

(A) Schematic of the computational workflow per MLO marker.

(B) Phenotypic nodes contain perturbed and unperturbed single cells with

similar MLO features. The clustergram depicts 1,000 subsampled single-cell

feature profiles of ten example nodes of the nucleoli screen. Features of

nucleoli are (1) NPM concentration (conc.) around nucleoli, (2) nuclear NPM

conc., (3) median NPM conc. in nucleoli, (4) median NPM intensity in nucleoli,

(5) total NPM intensity in nucleoli, (6) total area of nucleoli, (7) ratio area of

nucleoli to nucleus, (8) ratio nucleolar to nuclear NPM intensity, (9) ratio NPM

conc. in to conc. around nucleoli, and (10) number of nucleoli. False color

images of four example cells that were clustered into the indicated nodes are

shown on the right. Scale bars, 20 mm.

(C) Morphological changes of nucleoli over the cell cycle. Nucleolar features

are plotted along a cell-cycle trajectory (CCT) of more than 10,000 unper-

turbed cells (upper panel). False colored images of representative cells

derived from the indicated CCT positions are shown (lower panel). Scale

bar, 10 mm.
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screen contains cells with SRRM2droplets in the cytoplasm (Fig-

ures S3E and S3F; Table S2).

To assess the technical reproducibility of our analysis, we

compared how cells of three replicate conditions distributed

over the nodes (Figures S3G and S3H). Reassuringly, the frac-

tions of single cells assigned to each phenotypic node were

nearly identical between the biological replicates. Finally, to eval-

uate the biological consistency of our results with previous liter-

ature, we visualized 48 genes that are present in our library and

are known components of P-bodies as a network in which the

color and shape of nodes indicate PB morphology (Figure 3H).

We identified LSM14A, PATL1 (Pat1b), and EDC4 (Ge-1) among

the genes required for PB assembly as previously reported

(Ozgur et al., 2010; Yang et al., 2006; Yu et al., 2005). We further

identified four genes coding for proteasomal subunits (PSMA2,

PSMA4, PSMA6, and PSMC2) as positive regulators of PBs,

supporting previous findings that exposure of cells to the protea-

some inhibitor MG132 resulted in PB dissolution (Mazroui et al.,

2007). Moreover, we found that depletion of the mRNA decapp-

ing factors DCP1A and DCP2 leads to increased PB formation,

as it was previously shown in yeast (Sheth and Parker, 2003).

Together, these results provide confidence that our single-cell-

clustering approach is of high quality both in terms of technical

reproducibility and biological outcome.

Perturbation of Pre-mRNA Splicing Leads to SG
Formation
SGs are typically absent in unperturbed cells and form either

when cells experience stress or upon overexpression of certain

SG components, such as G3BP-1 or TIA-1 (Anderson and

Kedersha, 2002; 2009 Dewey et al., 2011). We included the SG

marker G3BP-1 to screen for the formation of SGs upon gene

perturbation. We did detect some SG-containing cells among un-

perturbed cell populations, which we used to train a pixel classi-

fication-based model for SG segmentation. Although SGs were

accurately segmented (Figure 1D), we could not entirely prevent

the classifier to also segment granule-like G3BP-1 staining

resembling cytoplasmic blebs. However, cluster analysis of the

morphological features of the segmented objects allowed the

separation of gene perturbations resulting in blebs from perturba-

tions resulting in actual SGs (Figures 4A and S4A–S4D; STAR

Methods). We identified 53 genes, whose perturbation caused a

marked increase in the fraction of cells with SGs as compared

to unperturbed cells (Figures 4B and 4C). Remarkably, when we

explored the biological function of these genes, we found that

eight out of 53 genes encode for either spliceosome components

or contribute to its assembly, seven genes function as splicing

regulators, and six genes play roles in RNA editing, processing,

and export, respectively (Figure 4D). To corroborate this finding,

we treated cells with either mRNA transcription or mRNA splicing

inhibitors. Strikingly, in all three cell lines tested we observed for-

mation of SGs in about 5%–15%of cells when pre-mRNA splicing
(D) Unperturbed cells (same as in C) are clustered into different nodes that

reflect the morphological changes of nucleoli over the cell cycle. Fractions

were calculated as moving average of 1,000 cells. Note that not all node

fractions are shown.

See also Figure S2.



Figure 3. Identification of Gene Perturba-

tions that Alter MLO Morphology

(A) Clustered median feature values of the 30

phenotypic nodes of the nucleoli screen. Features

1–10 as indicated in Figure 2B.

(B) Fractions of cells clustered into the 30 pheno-

typic nodes of the nucleoli screen (Scrambled: n =

726,715, mock: n = 77,824). Nodes that were

combined to perturbed states are indicated, as

well as the sumof the fractions of the perturbed cell

populations that clustered into these nodes.

(C) Gene perturbations above the threshold

(2.5 SDs of the mean of all fractions, gray dotted

lines) are considered as hits. False colored images

of cells from control (green) and hit genes (orange

or blue) are shown. Scale bar, 20 mm.

(D–G) Fractions of cells plotted as in (C) for per-

turbed states of (D) Cajal bodies, (E) PML nuclear

bodies, (F) splicing speckles, and (G) P-bodies.

(H) Network of 48 genes representing the overlap

of the P-body (PB) interactome (194 genes)

with the 1,323 analyzed gene perturbations. Node

colors and shape indicate the effect of the

respective gene perturbation on PBs. Phenotypic

strength indicates the total fraction of cells with the

respective perturbed MLO state in SDs from the

mean of all perturbations and controls.

See also Figure S3 and Tables S1 and S2.
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Figure 4. Genetic and Chemical Perturbation of Pre-mRNA Splicing Induces SG Formation

(A) Identification of gene perturbations with an increased fraction of cells with segmented SGs.

(B) Fraction of cells with SGs of control populations (green, n = 199 wells, mean fraction = 0.0077, SD = 0.0024) and of gene perturbations (orange, n = 53).

(C) Representative images of control cells and cells with the indicated gene perturbations stained for SGs (G3BP-1, magenta) and nuclei (blue). Scale bar, 20 mm.

(D) Protein interaction network for 25 out of 53 genes whose perturbation leads to the formation of SGs. Node colors indicate the functional annotation of

the genes.

(E) Images of cells treated with either DMSO or the indicated chemical compounds and stained for SGs. Scale bars, 20 mm.

(F) HeLa, A-431, and COS-7 cells were treated with the indicated chemical compounds and the fractions of cells that form SGs upon treatment were quantified.

Bars represent the mean fraction of cells derived from three independent experiments, error bars represent the SD.

See also Figure S4 and Table S1.
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is inhibited, but not in cells where mRNA transcription is blocked

(Figures 4E, 4F, and S4E). In addition, we performed fluorescence

in situ hybridization in these cell lines to detect poly(A)-mRNAs.

While poly(A)-mRNAs are almost absent in transcriptionally in-

hibited cells, they accumulate in the nucleus of cells treated

with splicing inhibitors and can be detected in cytoplasmic SGs

in HeLa and A-431 cells (Figure S4F). Thus, our screen revealed

a previously unrecognized functional link between pre-mRNA

splicing and SG formation, which can be observed in various

cell lines originating from different tissues.

Shared and Distinct Regulatory Pathways Control MLO
Formation
Onemain goal of generating this dataset was to reveal systems-

level properties that go beyond the identification of particular
6 Molecular Cell 72, 1–15, December 20, 2018
genes involved in the regulation of one MLO but emerge from

the cross-comparable scoring of genes. First, we calculated

functional annotation enrichments for all identified hits per

MLO separately and visualized them as networks of gene

ontology (GO) terms (Figures 5A–5F, S5A, and S5B). Comparing

the resulting patterns revealed that the six different MLOs

have distinct as well as shared control pathways. To relate the

functional enrichments to individual genes, we created interac-

tion networks of the hit genes in which the color and shape of

nodes indicates the respective MLO morphology upon pertur-

bation (Figures 5G–5K). The genes whose perturbation induces

SG formation are particularly enriched in splicing-related func-

tions, but also in transcription, mRNA binding, processing,

and transport (Figure 5A) and display 11-fold enrichment in

the KEGG pathway term ‘‘spliceosome’’ (Figure S5C). Genes
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that regulate nucleolar morphology are also enriched in

splicing-related functions but in addition cover a wide range

of other functions, such as transcriptional regulation, protea-

some and anaphase-promoting complex (APC)-dependent

protein degradation, and Wnt and other signaling pathways

(Figures 5B and 5G). For both PBs and Cajal bodies (CBs), we

observed a particular functional enrichment in second

messenger signaling (Figures 5C and 5E). We found that down-

regulation of the cAMP phosphodiesterases PDE4C and

PDE3B leads to increased PBs, while several other phosphodi-

esterase-encoding genes (PDE2A, PDE3A, PDE6A, PDE6D) as

well as PRKAA1 (AMPK) are required for PB assembly (Fig-

ure 5H). A study in yeast previously linked cAMP signaling to

PB regulation by demonstrating that cAMP-dependent protein

kinase (PKA) could dissociate PBs via phosphorylation of

Pat1 (Ramachandran et al., 2011) indicating that this regulation

is evolutionary conserved. For CBs, we identified PRKACB,

the catalytic subunit of PKA, and PRKX, a protein kinase with

similarity to PKA, to be required for CB formation (Figure 5J).

Unexpectedly, we found that genes whose silencing resulted

in altered splicing speckle morphology show less functional

enrichment in splicing as compared to genes whose silencing

affected nucleolar morphology or resulted in SG formation (Fig-

ure 5D). Instead, regulators of splicing speckles show a strong

enrichment in cell-cycle-related functions. We identified

Aurora kinase A (AURKA) and CDC25B (a phosphatase and

substrate of Aurora-A) among other centrosome-related

genes, as well as genes coding for regulatory subunits of the

phosphatase PP2A (PPP2R2B, PPP2R2C, and PPP2R2D) that

was shown to regulate Aurora-A stability in mitosis (Figure 5I;

Horn et al., 2007). Last, for PML nuclear bodies (PML-NBs)

we observed a strong enrichment for plasma membrane

and/or endosome-related terms (Figures 5F and S5C). Among

the strongest negative regulators are PIP5K1C, a phosphatidy-

linositol-4-phosphate 5-kinase, and PIK3CG, the catalytic

subunit of phosphatidylinositol-4,5-bisphosphate 3-kinase, as

well as INPP5F, an inositol polyphosphate-4-phosphatase (Fig-

ure 5K). Consistently, we also identified the growth factor

receptor TGFBR1, which acts upstream of these signaling

kinases, as a negative regulator of PML-NB formation. Previous

work has shown that transforming growth factor b (TGF-b)

induces the expression of a cytoplasmic isoform of PML,

which is required for the accumulation of TGFBR1 in early

endosomes (Lin et al., 2004), but how that connects to the

control of PML-NB abundance remains to be investigated.

Thus, our screen provides a resource for exploring numerous

biological processes that were previously not linked to the regu-

lation of MLOs. In addition, our data demonstrate that some

genes act specifically on one MLO, whereas other regulatory
Figure 5. Distinct Regulatory Pathways Control MLOs

(A–F) Network visualization of functional annotation enrichments calculated for

(B) nucleoli, (C) P-bodies, (D) splicing speckles, (E) Cajal bodies, and (F) PML

according to functional similarity. Node edges (gray lines) are shown if two

enrichment.

(G–K) Gene networks of the regulators of (G) nucleoli, (H) P-bodies, (I) splicing sp

indicate the effect of the respective gene perturbation on MLO morphology.

See also Figure S5.
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pathways control more than one MLO, indicating regulatory

crosstalk.

Co-occurrence of Deregulated MLO States
To investigate this coordination in more detail, we asked

whether two or more perturbed states of MLOs co-occur and

which gene perturbations are causing them. We pooled all

genes that were scored as a hit in at least one of the six

MLO screens. For these 453 genes, we used the phenotypic

scores of the twelve different perturbed MLO states (Table

S1) to compile a dataset that can be visualized as a two-dimen-

sional t-distributed stochastic neighbor embedding (t-SNE)

map (Figures 6A, S6A, and S6B; STAR Methods). In such a

map, genes are positioned relative to all other genes based

on their similarity in effects across the various perturbed MLO

states. By coloring these genes according to their phenotypic

scores for each of the 12 perturbed MLO states and comparing

the resulting patterns, we discovered partial co-occurrences.

For instance, a subset of gene perturbations that lead to

increased PML-NBs do not form PBs (Figure 6A, encircled in

left panels). Another example is a set of gene perturbations

that lead to both disturbed nucleoli (NPM diffuse in the nucleo-

plasm) and increased formation of CBs (Figure 6A, encircled in

right panels). We next calculated how often a gene was scored

as a hit for any of the perturbed MLO states (including SG for-

mation) and highlighted the result on the gene t-SNE map (Fig-

ure 6B). Of the 453 gene perturbations more than 70% (325

genes) affected only one MLO, 20% (92 genes) affected two

MLOs and less than 10% (36 genes) affected the morphology

of three or more MLOs (Figure S6C). The most abundantly per-

turbed MLO states observed for the 128 gene perturbations

with pleiotropic effects were increased nucleoli, followed by

SG formation, increased CBs, and increased splicing speckles

(Figure S6D).

We next calculated which of the co-occurrences of perturbed

MLO states are statistically significant and visualized the results

as a network in which the edge width indicates the number of

genes that are hits for both perturbed MLO states (Figure 6C).

This shows that both the co-occurrence between increased

PML-NBs and absence of PBs, and between disturbed nucleoli

and increased CBs (as highlighted in Figure 6A) were significant.

In addition, the network reveals an interesting anti-correlation be-

tween nucleolar (light-blue nodes) and PB (dark blue nodes)

morphology. Some gene perturbations that lead to increased

nucleoli also display dissolved PBs where DDX6 is either cyto-

plasmic diffuse or present at very low levels (Figure 6D, groups 1

and 2). Conversely, gene perturbations leading to increased PBs

negatively affect nucleoli (decreased NPM; Figure 6D, group 3).

Since the major function of nucleoli is to regulate ribosome
gene perturbations resulting in (A) SGs, or increased or decreased states of

nuclear bodies. Nodes represent GO terms and are colored and grouped

annotations share more than 20% of genes. Node sizes represent fold

eckles, (J) Cajal bodies, and (K) PML nuclear bodies. Node colors and shape
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Figure 6. Co-occurrence of Perturbed MLO States and Their Functional Consequences on the Cellular State

(A) Gene t-SNE maps of 453 gene perturbations (nodes) that are scored as hit for one or more perturbed MLO states. Color indicates the respective phenotypic

strength per gene.

(legend continued on next page)
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biogenesis, this finding could suggest the existence of a system

that adjusts ribosome availability to the needs of mRNA

translation.

Hierarchical Functional Interactions between Perturbed
MLOs and Cellular States
An important and often still poorly understood question is how

MLOs are integrated into cellular physiology. While the uncov-

ered genetic networks controlling the formation of MLOs may

suggest certain links, they do not directly infer this from the

data. Our multivariate image-based approach extracts besides

multiple properties of MLOs also multiple features describing

the phenotypic state and physiology of cells, allowing us to

directly map such interactions. To achieve this, we applied a sta-

tistical method termed the hierarchical interaction score (HIS)

that we previously developed to infer hierarchical interactions

from multivariate datasets (Snijder et al., 2013). We calculated

the HIS between 13 perturbed MLO states and 17 features

describing properties of the cellular state and physiology derived

from 1,326 gene perturbations and 218 control populations

(see STAR Methods). We obtained 50 functional interactions

with HIS scores greater than zero and visualized them as a hier-

archical interaction network (Figure 6E). It is important to note

that the inferred directionality of the interaction between two

properties can be interpreted as the statistical likelihood of a

cell having the downstream property if a gene perturbation

caused the upstream property and does not by itself reveal a

direct causality.

To substantiate the inferred functional interactions, we

explored three examples from the HIS network in more detail.

We plotted the values of cellular state properties on the t-SNE

map that was generated from data on perturbed MLO states

and does not contain any information about the cellular state

(see STAR Methods). By doing so, we observed patterns of

cellular states that explain the inferred hierarchy of interactions.

For example, cell area is increased for the majority of gene

perturbations, but only a subset also has increased CBs (Figures

6F and 6G). In contrast, almost all gene perturbations that

lead to increased CBs also display increased cell area (Fig-
(B) Gene t-SNE map highlighting gene perturbations with pleiotropic effects on t

(C) Network visualization of significant co-occurrences between two perturbed M

Edge width (gray lines) indicates the number of gene perturbations with both per

(D) Heatmap of the phenotypic strength of gene perturbations that affect both nu

network in (C).

(E) Network visualization of the hierarchical interaction score (HIS) between per

cellular state (gray nodes). Edges (gray arrows) indicate the directionality and str

(F–H) Hierarchical interaction between increasedCajal bodies (CBs) and cell area.

increased CBs. (G) Gene t-SNE map as in (A). Color indicates the median cell ar

increased CBs and cell area. Color indicates the phenotypic strength of increased

(I–K) Hierarchical interaction between increased PML nuclear bodies (PML-NBs

distribution of gene perturbations with increased PML-NBs. (J) Gene t-SNE map

normalized to controls. (K) Correlation between increased PML-NBs and fracti

PML-NBs as in (I). Light-blue dashed line indicates the fraction of control cells in

(L–N) Hierarchical interaction between absent P-bodies (DDX6 cytoplasmic diffus

(A) showing the distribution of gene perturbations with DDX6 cytoplasmic diffuse.

concentration of each gene perturbation normalized to controls. (N) Correlation

Color indicates the phenotypic strength of ‘‘DDX6 cytoplasmic diffuse’’ as in (L). Li

controls.

See also Figure S6.
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ure 6H). Another example is the hierarchical interaction between

increased PML-NBs and the fraction of cells in S phase. While

the majority of gene perturbations in the t-SNE map displays

reduced fractions of S phase cells, only a subset have increased

PML-NBs (Figures 6I and 6J). Conversely, all gene perturbations

that lead to increased PML-NBs have lower fractions of S phase

cells (Figure 6K). As a third example, we highlight the direction-

ality between the absence of PBs and increased cytoplasmic

protein concentration (Figures 6L–6N). Almost all gene perturba-

tions that result in the dissolution of PBs with DDX6 being diffuse

in the cytoplasm have a higher cytoplasmic protein concentra-

tion, while not all gene perturbations that lead to high cyto-

plasmic protein concentration have this perturbed PB state.

Increased PML-NBs Cause a Delay in DNA Replication
To characterize one of these interactions in more detail, we

decided to explore the hierarchical interaction between

increased PML-NBs and the fraction of cells in S phase. First,

we analyzed whether this correlation holds true for single cells.

Indeed, when we compared cell populations of hit genes for

increased PML-NBs to cells of gene perturbations that lead to

G1 arrest we observed the same hierarchical interaction as

shown before. Single cells with increased PML-NBs have a low

level of 5-ethynyl-20-deoxyuridine (EdU) incorporation (Fig-

ure 7A). G1-arrested cells, in contrast, though displaying a similar

reduction in EdU intensity, do not have increased PML-NBs.

We next included the DNA content to explore whether cells

with increased PML-NBs are arrested in G1 (Figures 7B and

S7A). Surprisingly, we found that many cells with increased

PML-NBs have the DNA content of S phase cells but very low

levels of EdU incorporation (dashed black box in Figure 7B) sug-

gesting that these cells have a slower DNA replication rate. To

confirm these findings in independent experiments, we targeted

five genes that are both components of PML-NBs and the stron-

gest negative regulators of PML-NBs (Figure S7B) with siRNAs in

two cell lines and stained the cells with antibodies against two

PML-NB markers, PML and Sp100. We reproduced the findings

of the screen in HeLa cells and confirmed that cells with

increased PML-NBs also contained elevated levels of Sp100,
he six screened MLOs.

LO states (nodes). Node colors represent individual MLOs (see cartoon in E).

turbed MLO states.

cleoli and P-bodies (PBs). Gene groups 1–3 refer to the indicated edges of the

turbed MLO states (colored nodes, see cartoon) and features describing the

ength of the inferred interaction.

(F) Gene t-SNEmap as in (A) showing the distribution of gene perturbations with

ea of each gene perturbation normalized to controls. (H) Correlation between

CBs as in (F). Light-blue dashed line indicates the median cell area of controls.

) and fraction of cells in S phase. (I) Gene t-SNE map as in (A) showing the

as in (A). Color indicates the fraction of cells in S phase per gene perturbation

on of cells in S phase. Color indicates the phenotypic strength of increased

S phase.

e) and increased cytoplasmic protein concentration. (L) Gene t-SNE map as in

(M) Gene t-SNE map as in (A). Color indicates the median cytoplasmic protein

between ‘‘DDX6 cytoplasmic diffuse’’ and cytoplasmic protein concentration.

ght-blue dashed line indicates themedian cytoplasmic protein concentration of
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Figure 7. Increased PML Nuclear Bodies Cause a Decrease in DNA Replication Rates

(A) EdU intensity of 800 subsampled cells of control wells (derived from five different plates), five hits for increased PML-NBs, and five perturbations that lead to

G1 arrest. Color indicates total PML intensity in segmented PML-NBs as SD from the mean of all control wells. Dashed line indicates approximate threshold for

support vector machine (SVM)-based classification of S phase cells. Note that the total nuclear EdU intensity also includes weak signal of the protein stain

succinimidylester.

(B) DAPI and EdU intensity of single cells. Color indicates total PML intensity in segmented PML-NBs as in (A). Box (dashed black outline) highlights cells with

increased PML-NBs and reduced EdU incorporation. Note that the total nuclear EdU intensity also includes weak signal of the protein stain succinimidylester.

(C) Sp100 (magenta) is enriched with PML (green) in increased PML-NBs.

(D) EdU intensity and total PML intensity in segmented PML-NBs of control cells and HIPK1- or HIPK2-depleted cells (upper panel). Lower panel shows the

fraction of cells with a total PML intensity in segmented PML-NBs of more than two SDs from the mean of control cells (n = 1,336–3,086 per condition).

(E) EdU intensity of the same cells as in (D), but color indicates the total Sp100 intensity in segmented PML-NBs (upper panel). Lower panel shows the fraction of

cells with a total Sp100 intensity in segmented PML-NBs of more than two SDs from the mean of control cells.

(legend continued on next page)
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as well as reduced EdU incorporation (Figures 7C–7E). In A-431

cells, three out of five gene perturbations resulted in elevated

fractions of cells with increased PML-NBs, and the reduced

EdU incorporation was observable albeit less pronounced due

to the smaller proportion of cells with increased PML-NBs (Fig-

ures S7C and S7D). To verify that EdU incorporation rates are

slower in cells with increased PML-NBs, we allowed cells to

incorporate EdU for 60 min instead of 15. Indeed, cells with

increased PML-NBs displayed higher EdU intensity as

compared to the 15-min pulse, but the levels remained lower

as compared to control cells (Figure 7F), underscoring that aber-

rantly increased PML-NBs correlate with decreased DNA repli-

cation rates.

Finally, we addressed the directionality inferred by the HIS

network. If increased PML-NBs were the cause and not the

consequence of a slower DNA replication rate, other perturba-

tions of DNA replication would not lead to increased PML-NBs.

To test this, we treated cells with either hydroxyurea (HU) or

deoxythymidine (dT), which both stall replication forks. EdU

incorporation was abolished in cells treated with either drug,

and the replication factor RPA1/p70 changed from a diffuse to

a speckled nuclear pattern localizing with PCNA at stalled repli-

cation forks (Figure 7G) as previously described (Urban et al.,

2017). However, we did not observe increased PML-NBs in cells

treated with HU or dT (Figures 7H and 7I). HU- and dT-treated

cell populations displayed the same fraction of cells with

increased PML-NBs as control populations (below 5%) and did

not reach the values observed for cell populations depleted of

HIPK1 or HIPK2 (gray dotted boxes in Figure 7I). Consistently,

genetically perturbing the DNA helicases BLM (Bloom syndrome

protein) or WRN (Werner syndrome ATP-dependent helicase),

which promote replication fork movement (Urban et al., 2017),

did not lead to increased PML-NBs (Table S1). This indicates

that aberrantly large PML-NBs are likely to cause slower DNA

replication rates and that homeodomain-interacting protein

kinases (HIPKs) are required to prevent this effect.

HIPKs are known to interact with and phosphorylate PML-NB

components (Rinaldo et al., 2008; Figure S7B) and are alsomem-

bers of the dual-specificity protein kinase family, like DYRK3 and

MBK-2, which promote the dissolution of other MLOs in a

kinase-dependent manner (Wippich et al., 2013; Rai et al.,

2018; Wang et al., 2014). To test whether HIPKs perform their

action in a similar manner as DYRK3 by promoting the dissolu-

tion of PML-NB constituents through phosphorylation, we

overexpressed HIPK1 and HIPK2 and quantified their effect on

PML-NBs. Intriguingly, and consistent with previous work (Ecs-

edy et al., 2003; Engelhardt et al., 2003), HIPK1 and HIPK2

both partition into PML-NBs (Figures S7E and S7F). While their

overexpression does not cause a dissolution of the scaffold
(F) EdU intensity and mean PML intensity in segmented PML-NBs of control cells

60 min before fixation. (n = 1,336–3,086 per condition).

(G–I) Stalled replication forks do not induce an increase in PML-NBs. Representa

were labeled with EdU and stained with antibodies against RPA1 (G) or PML (H

PML-NBs of control cells or cells treated with the indicated concentration of HU or

a mean PML intensity in segmented PML-NBs of more than two SDs from the mea

boxes show the fractions as calculated in (D) but for mean PML intensity in segm

See also Figure S7.
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protein PML (Figures S7G–S7I), it does dissolve other compo-

nents of PML-NBs, such as Sp100, in a concentration-depen-

dent manner (Figures S7J–S7L). Thus, HIPKs can be added to

the growing list of dual-specificity kinases that control the

condensation of proteins into MLOs, which in their case are

PML-NBs.

DISCUSSION

Biological Processes that Regulate MLO Formation
Among the many biological processes we found to control MLO

formation, one unexpected finding was the discovery that

several genes involved in growth factor signaling at the plasma

membrane impact on the abundance of PML nuclear bodies

(PML-NBs). Although the molecular aspects of this control

remain to be elucidated, it suggests a mechanism by which

growth factor signaling induces cell proliferation through modu-

lating PML-NB size, which may act upstream of DNA replication

rates, as indicated by our findings. As another example, we

identified multiple genes involved in pre-mRNA splicing whose

genetic perturbation induced SG formation. We currently do

not know whether SG formation is induced by a leakage of

unspliced pre-mRNA into the cytoplasm, or by the protein prod-

ucts of these unspliced mRNAs. One mechanism by which cells

could link spliceosome integrity to SG formation would involve a

protein sensor that shuttles between the nucleus and the cyto-

plasm. Indeed, some SG components, such as TIA-1, regulate

splicing in the nucleus under normal conditions and might

translocate to the cytoplasm upon stress where they contribute

to SG formation. Thus, the nuclear-cytoplasmic translocation of

certain RNA-binding proteins could be a feedback mechanism

bywhich cells sense splicing stress and arrestmRNA translation.

Regulatory Crosstalk between MLOs
The translocation of MLO components could be a general princi-

ple by which cells sense stress in one MLO and signal it to other,

functionally related MLOs. For example, previous work has

shown that inhibition of transcription induces the reorganization

of nucleoli and the formation of nucleolar caps, which recruit

numerous non-resident proteins including coilin and PML, the

scaffold proteins for CBs and PML-NBs (Boulon et al., 2010;

Shav-Tal et al., 2005). The recruitment of coilin and PML to

nucleolar caps might in turn alter the integrity and function of

CBs and PML-NBs, respectively. Here, we identified an anti-

correlation between the morphology of nucleoli and cytoplasmic

P-bodies (PBs), which likewise could be achieved by relocating

components between the two MLOs. PATL1, for instance, is pri-

marily a PB component and required for PB formation (Fig-

ure 3H). However, PATL1 shuttles between the nucleus and
and HIPK1- or HIPK2-depleted cells. Cells were incubated with EdU for 15 or

tive images of unperturbed cells or cells treated with 2 mM hydroxyurea (HU)

). Scale bars, 20 mm. (I) EdU intensity and mean PML intensity in segmented

deoxythymidine (dT) (upper panel). Lower panel shows the fraction of cells with

n of control cells (n = 2,214–3,070 per condition). For comparison, dotted gray

ented PML-NBs.
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the cytoplasm and, upon inhibition of transcription, was found in

nucleolar caps when its nuclear export was prevented (Marnef

et al., 2012). Thus, aberrantly perturbed nucleoli might segregate

PATL1, and its nucleolar detention then disrupts PB assembly in

the cytoplasm. Regulatory crosstalk might also be mediated by

RNAs. In the case of dysfunctional ribosome biogenesis, higher

levels of ribosome-free mRNAs in the cytoplasm might induce

an increased formation of PBs. Indeed, treatment of cells with

puromycin, which inhibits translation by triggering premature

release of mRNAs from ribosomes, enhances P-body assembly

(Eulalio et al., 2007). Such crosstalk between nucleoli and PBs

might be an elegant mechanism to adapt the production of

ribosomes to the levels of mRNAs. Importantly, our identification

of regulatory crosstalk between different MLOs complements

recent advances in deciphering the molecular composition of

MLOs (Fong et al., 2013; Hubstenberger et al., 2017; Youn

et al., 2018). It will be interesting to monitor such compositional

changes upon stress or gene perturbations that together with

our findings might illuminate how MLOs sense and react to

stressful conditions and how this impacts physiological pro-

cesses in the cell.

Functional Consequences of Deregulated MLO
Morphology
A particularly unique nature of our systems-level study is the

ability to infer interactions between MLO states and physiolog-

ical properties of cells. In general, if MLOs serve as ‘‘bioreac-

tors’’ that concentrate components to facilitate biochemical

reactions, their absence would decrease the efficiency of reac-

tions and reduce proliferation rates and/or the cell’s ability to

respond to stress, while an aberrant increase could imply

increased production rates of, for instance, RNPs. If MLOs

serve as storage compartments, however, the upregulation of

the scaffold proteins or core components might enhance the

recruitment of other MLO residents through multivalent interac-

tions and thus deplete the cell from these molecules. If in this

case the proteins or RNAs function elsewhere in the cell,

abnormally increased MLOs have negative implications for

cellular processes. Our data revealed that cells with increased

PML-NBs have decreased DNA replication rates. Multiple sce-

narios might explain our observation. First, PML-NBs contain

many proteins required for DNA replication and repair (Van

Damme et al., 2010); hence, increased PML-NBs could lead

to increased segregation or residence time of replication or

DNA-repair factors. Second, PML-NBs are considered as plat-

forms for protein modification, in particular, sumoylation (Ber-

nardi and Pandolfi, 2007; Van Damme et al., 2010). Sumoylation

is a key modification for factors involved in DNA replication and

repair (Lecona and Fernandez-Capetillo, 2016). Increased

PML-NBsmight interfere with the sumoylation and de-sumoyla-

tion cycles of replication factors and thus slow down DNA

replication progression. Sentrin-specific proteases (SENPs)

catalyze the maturation of SUMO proteins and de-conjugation

of SUMO-linked proteins, and knockdown of SENP1, SENP2,

or SENP6 leads to increased PML-NBs and accumulation of

SUMO1 and SUMO2 in PML-NBs (Figure S7B; Hattersley

et al., 2011; Yates et al., 2008). This suggests that PML-NB ho-

meostasis requires turnover of SUMO. Last, recent work
demonstrated a key role for the ubiquitin hydrolase USP7/

HAUSP in regulating replication fork progression through de-

ubiquitinating SUMO-2 (Lecona et al., 2016). We identified

USP7 as a negative regulator of PML-NBs (Figure 5K). Since

USP7 partially colocalizes with PML-NBs and is repressed by

the PML-NB component DAXX, increased PML-NBs might

segregate and inhibit USP7, which consequently decreases

DNA replication rates. Although untangling the exact molecular

mechanisms of how increased PML-NBs impact on replication

rates requires further studies, this example illustrates the impor-

tance of controlling the properties of MLOs in this process.

Dual-Specificity Kinases as Key Regulators of MLO
Formation
Our finding that depletion of HIPK1 or HIPK2 leads to increased

PML-NBs strengthened a key role for HIPKs in the control of

PML-NB homeostasis and/or composition. HIPKs belong to

the DYRK kinase family and share some interesting parallels

with DYRK kinases (van der Laden et al., 2015). First, HIPKs

and DYRKs seem to phosphorylate several MLO components

that may contribute to global changes in MLO size and compo-

sition. Second, HIPKs and DYRKs have intrinsically disordered

domains and low complexity regions, by which they might asso-

ciate with specific MLOs. This could be one mechanism for

homeostatic size control of MLOs in that larger MLOs would re-

cruit more kinases, which then counteract a further size increase.

Third, DYRKs and HIPKs are constitutively active but appear to

be tightly regulated by proteasomal degradation. We recently

demonstrated that DYRK3 is present at low levels in G1 and S

phase, but its presence increases inG2 and duringmitosis where

it contributes to the dissolution of splicing speckles (Rai et al.,

2018). HIPK2 is largely unstable in unperturbed cells and be-

comes stabilized upon DNA damage, which might contribute

to the compositional and spatial rearrangements observed for

PML-NBs (Dellaire and Bazett-Jones, 2004; Eskiw et al., 2003;

Winter et al., 2008). Having such broad impact on diverse

MLOs, low levels of DYRKs and HIPKs might be sufficient under

normal conditions to achieve homeostasis of splicing speckles

and PML-NBs, respectively. Thus, our finding that HIPKs act

as regulators of PML-NB homeostasis adds to the growing

importance of DYRK family kinases as central regulators

of MLOs.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

mouse monoclonal anti-PML (PG-M3) Santa Cruz Biotechnology sc-966; RRID: AB_628162

rabbit polyclonal anti-SRRM2 Sigma-Aldrich HPA041411; RRID: AB_10796671

mouse monoclonal anti-NPM1 Sigma-Aldrich B0556; RRID: AB_2154872

rabbit polyclonal anti-Coilin Santa Cruz Biotechnology sc-32860; RRID: AB_2081431

mouse monoclonal anti-G3BP1 Abcam ab56574; RRID: AB_941699

rabbit polyclonal anti-DDX6 Bethyl A300-461A; RRID: AB_2277216

rabbit monoclonal anti-RPA1/RPA70 Abcam ab79398; RRID: AB_1603759

rabbit polyclonal anti-Sp100 Sigma-Aldrich HPA017384; RRID: AB_1857399

mouse monoclonal anti-PABP Santa Cruz Biotechnology sc-32318; RRID: AB_628097

rabbit polyclonal anti-G3BP1 (H-94) Santa Cruz Biotechnology sc-98561; RRID: AB_2294329

mouse monoclonal anti-PML (1B9) Acris Antibodies AM26594AF-N

donkey anti-mouse Alexa Fluor 488 ThermoFisher A-21202; RRID: AB_141607

donkey anti-rabbit Alexa Fluor 488 ThermoFisher A-21206; RRID: AB_141708

donkey anti-mouse Alexa Fluor 568 ThermoFisher A10037; RRID: AB_2534013

donkey anti-rabbit Alexa Fluor 568 ThermoFisher A10042; RRID: AB_2534017

donkey anti-mouse Alexa Fluor 647 ThermoFisher A-31571; RRID: AB_162542

Chemicals, Peptides, and Recombinant Proteins

Hydroxyurea Sigma-Aldrich H8627

Thymidine Sigma-Aldrich T1895

Meayamycin Albert et al., 2009 N/A

FR901464 Kaida et al., 2007 N/A

alpha-Amanitin Sigma-Aldrich A2263

Critical Commercial Assays

Click-iT EdU Alexa Fluor 647 Imaging Kit ThermoFisher # C10340

Deposited Data

Raw images of all figures This paper; Mendeley Data https://doi.org/10.17632/h8byr7w3sx.1

Experimental Models: Cell Lines

Human: HeLa, cervical cancer cell line Lab of Marino Zerial,

Dresden, Germany

HeLa MZ

Human: A-431, epithelial carcinoma cell line ATCC CRL-1555

African green monkey: COS-7, kidney

fibroblast-like cell line

ATCC CRL-1651

Oligonucleotides

siRNA targeting sequences: Plates 1-3 of the

Ambion Silencer Select Human Druggable Genome

siRNA Library V4

ThermoFisher #4397922

siRNA targeting sequences against selected human

genes; Ambion Silencer Select

This study N/A

HIPK1 (NM_198268) cDNA GENEWIZ N/A

HIPK2 (NM_022740) cDNA GENEWIZ N/A

Recombinant DNA

pEF1alpha-AcGFP1-C1 Vector Clontech #631974

pEF1alpha-AcGFP1-HIPK1 This paper N/A

pEF1alpha-AcGFP1-HIPK2 This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB N/A https://www.mathworks.com/products/matlab.html

Cytoscape N/A https://cytoscape.org/

GUI for pixel classification-based MLO segmentation This paper https://github.com/pelkmanslab/PixelClassification

FlowSOM (algorithm for single cell clustering) Van Gassen et al., 2015 http://www.bioconductor.org/packages/release/bioc/

html/FlowSOM.html

CellProfiler Carpenter et al., 2006 http://cellprofiler.org/

HIS (to calculate hierarchical interaction scores) Snijder et al., 2013 https://www.nature.com/articles/nmeth.2655#

supplementary-information

Cycler (to construct cell cycle trajectories) Gut et al., 2015 https://github.com/pelkmanslab/Cycler
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Lucas

Pelkmans (lucas.pelkmans@imls.uzh.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HeLa MZ cells were cultivated at 37�C and 5% CO2 in DMEM (ThermoFisher) supplemented with 1% GlutaMAX (ThermoFisher) and

10% FBS (Merck). A-431 and COS-7 cells were cultivated at 37�C and 5%CO2 in DMEM containing sodium pyruvate (PAN-Biotech)

supplemented with 1% GlutaMAX (ThermoFisher) and 10% FBS (Merck).

METHOD DETAILS

Transfections
For the screens, about 900 HeLa cells were plated per well in 384-well plates (Greiner) for reverse transfection on top of a mixture of

pooled siRNAs (5 nM final concentration) and RNAiMAX (0.08 ml per well in OptiMEM; ThermoFisher) according to manufacturer’s

specifications. Cells were subsequently grown for 72 hours at 37�C in complete DMEM to establish efficient knock down of the

targeted genes. For plasmid transfections cells were seeded in 96-well plates (Greiner) and incubated at 37�C till cells reached

�70% confluency. Cells were transfected with 100 ng of plasmid per well using Lipofectamine 2000 (ThermoFisher) according to

manufacturer’s specifications and incubated for 24 hours at 37�C.

Assays and drug treatments
For measuring DNA synthesis rates cells were incubated for 15 or 60 minutes at 37�C in DMEM containing 200 mm 5-ethynyl-20-
deoxyuridine (see Click-iT EdU Alexa Fluor 647 Imaging Kit, ThermoFisher). For stalling DNA replication forks cells were incubated

for 2 hours at 37�Cwith the indicated concentrations of hydroxyurea or deoxythymidine. For chemical inhibition of pre-mRNA splicing

cells were incubated with 100 ng/ml FR901464 or 10 nMMeayamycin for 20 hours at 37�C. For inhibition of mRNA transcription cells

were incubated with 10 ug/ml alpha-Amanitin for 20 hours at 37�C.

siRNA library
The siRNA library consists of three pooled siRNAs against each of 1,354 human genes (listed in Table S1). Among the genes targeted

are the human kinome and phosphatome (Plates 1-3 of the Ambion Silencer Select Drugable Genome Library, ThermoFisher) and a

custom set of 300 genes (Ambion Silencer Select, ThermoFisher) encoding for phosphoproteins with GO-term annotations for any of

the six screened MLOs. GO-terms and gene candidates were retrieved from QuickGO (https://www.ebi.ac.uk/QuickGO/). 199 wells

with negative controls (Silencer Select Negative Control No. 1, ThermoFisher), 19 wells with mock controls (no siRNAs) and 10 wells

with positive controls (siRNA against KIF11) were positioned throughout the screen plates.

Cell stains
All staining and washing steps were performed on a semi-automated liquid handling platform (BioTek). Between each staining step

cells were washed four times with PBS. Cell were fixed with 4% PFA in PBS for 30 min and permeabilized with 0.25% Triton X-100 in

PBS for 30 min. EdU Click-iT reactions were performed before blocking according to manufacturer’s specifications (Click-iT EdU

Alexa Fluor 647 Imaging Kit, ThermoFisher) and as previously described (Gut et al., 2015). Cells were blocked in 5% donkey serum

(Abcam) for 1 hour at room temperature (RT) and incubated over night at 4�C in primary antibodies diluted in 5% donkey serum.
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Cells were incubated for 90 minutes at RT in secondary antibodies diluted 1:500 in 5% donkey serum. Cells were subsequently

stained for 10 minutes with DAPI (1:1,000) and for 5 minutes with succinimidyl ester (Alexa Fluor 647 NHS Ester; ThermoFisher;

1:80,000). For detection of polyA-mRNA fluorescence in situ hybridization (FISH) was performed according to manufacturer’s

specifications using Stellaris RNA FISH buffers (LGC Biosearch Technologies) and a custom ATTO 488-labeled 18-nucleotide

long oligo-dT probe (Microsynth). Cells were fixed with 4% PFA in PBS for 10 min and permeabilized with 70% ethanol for 6 h at

4�C. Cells were washed and incubated over night at 37�C in hybridization buffer containing the probe before they were washed

and processed for immunofluorescence.

Imaging
Images were acquired with an automated spinning disc microscope (CellVoyager 7000, Yokogawa) using a 40x air objective

(0.95 NA, Olympus) and two Neo sCMOS cameras (Andor).

Images from two wavelengths were acquired simultaneously (405 and 568 nm, 488 and 647 nm). Twelve z-planes spaced by 1 mm

were acquired per site and channel, and maximum intensity projections were saved. All images presented in the same panel of a

figure are rescaled to the same brightness/contrast values.

Image processing
Two image processing pipelines were set up with CellProfiler (Carpenter et al., 2006). In a first pipeline, images were illumination cor-

rected and camera-dependent invariant background signal was subtracted (Stoeger et al., 2015). A five-pixel y-shift between two

band pass filters was corrected for 488 and 647 nm images. Nuclei and cells were segmented based on DAPI and succinimidyl ester

signal intensity, respectively (Stoeger et al., 2015). Intensity, texture, area and shape features were extracted from segmented nuclei,

cells and cytoplasms. In a second pipeline, segmentations of nuclei, cells, andMLOswere loaded and segmentedMLOswere related

to either parent nuclei or parent cytoplasms. Intensity, texture, area and shape features were extracted from each single segmented

MLO. MLOs with an area smaller than three pixels were discarded. For all segmented MLOs related to one parent nucleus or parent

cytoplasm, mean, median and total values of intensity and area features were calculated. Segmented MLOs were subtracted from

their parent nuclei or cytoplasms to measure the MLO marker intensity around MLOs.

Segmentation of MLOs using pixel classification
For pixel classification-based MLO segmentation a customized GUI was written in MATLAB. The code is available as Supplemental

Software and can be downloaded from GitHub (https://github.com/pelkmanslab/PixelClassification). Analogous to the pixel classi-

fier ilastik (http://ilastik.org/) the pixel features used for classification are based on a variety of image filters outlined in detail in the

GeneratePixelFeature.m function of the Supplemental Software. Briefly, image filters includeGaussian filters, difference-of-Gaussian

and Laplacian-of-Gaussian filters, mean and median filters, entropy filters, morphological opening and closure, as well as measure-

ments of the local background, blind deconvolution of images, watershed lines (Stoeger et al., 2015), and top hat filters. Image filters

and scales were selected prior to training according to themorphology of the six differentMLOs (see Supplemental Software). For the

segmentation of nucleoli, features of nuclei and cell segmentations were also included. For eachMLO the training set was composed

of more than 1,000 manually selected pixels from 150 to 200 different wells associated with a binary label (signal or background) and

the list of feature values for each pixel. The classification model was trained using the inbuilt support vector machine functionality of

MATLAB (fitsvm.m). In the case of ring- or donut-shaped MLOs, such as Cajal bodies or nucleoli, the segmentation algorithm was

trained in such a way that resulting holes in segmented structures were filled.

Data clean up and classification of cell cycle phases
Cells that extended beyond the field of view (border cells) were discarded from all images. For the remaining cells supervised

machine learning was applied to discard apoptotic, wrongly segmented and multinucleated cells (R€amö et al., 2009; Stoeger

et al., 2015). To remove gene perturbations that strongly decreased cell number a mixture-model of three Gaussians was fit to

the cell number distribution of all wells. The minimal cell number per well was set to the 95th percentile of the first Gaussian. We

excluded 31 perturbations, among them PLK1,WEE1, AURKB and the positive control KIF11 (in total 2.3 percent of the gene library)

that seemed to be essential for cell viability as their knock down resulted in low numbers of vital cells (< 246). Supervised machine

learning was applied to classify cells in S-phase based on intensity and texture of the 5-ethynyl-20-deoxyuridine (EdU) Click-iT stain

(Gut et al., 2015). Support vector machines were trained to classify mitotic (pro, meta, ana, and telo phase) and early G1 cells to

exclude them from this analysis. To assign the remaining cells to either G1 or G2 phase, histograms of the DNA content (total nuclear

DAPI intensity) were plotted for all interphase cells of one 384-well plate. Cells classified as S-phase were subtracted and two

Gaussians were fitted using the gmdistribution.fit function. The minimal point between the two means was used as split point and

populations on either side of the split point were classified as G1 and G2, respectively. Subsequently, for each well a Gaussian

was fit on either histogram of G1 and G2 cell populations using the sgm.fit_distribution function and outliers were discarded.

Correction of single cell intensity-based features
To correct single cell intensity and texture measurements for positional staining biases within each plate a well correction factor

was derived as follows: Correction factor fi,j = median(rowi) + median(columnj) - 23median(plate), wheremedian(rowi) is the median
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value for the given feature of all single cells in rowi, likewise median(columnj) is the median value for the given feature of all

single cells in columnj and median(plate) is the median of all single cell feature values of the plate. The corrected single cell

value Ci,j,k was given by Ci,j,k = fi,j + Oi,j,k, where Oi,j,k is the original value of the given feature for cell k of well(rowi, columnj). To

normalize feature values between different plates we computed Ni,j,k = (Ci,j,k - median(Cplate)) / mad(Cplate), where median(Cplate) is

the median of all corrected cell values of a given plate and mad(Cplate) is the median average deviation of all corrected cell values

of the plate.

Single cell clustering in multivariate MLO feature space
In addition to the derived single cell MLO features from CellProfiler (see Image Processing), such as ‘Total marker intensity in MLOs’,

or ‘Median marker concentration in MLO’ (concentration = total intensity divided by area), the following ratios were calculated: MLO

area to total area of parent nucleus or cytoplasm, MLOmarker intensity in segmented MLOs to marker intensity in parent nucleus or

cytoplasm, and marker intensity in MLOs to marker intensity around MLOs within the parent nucleus or cytoplasm. These ratios are

particularly important to avoid bias in hit detection due to size scaling effects. For each MLOmarker only features that displayed suf-

ficient variability over all single cells were included in the analysis. The features are indicated in Figures 3A, S3A–S3D, and S4A and

Table S2. For instance, PML intensity around segmented PML nuclear bodies was close to background in all single cells, thus this

feature was excluded. This selection resulted in 8-12 features per MLO. Unperturbed and perturbed conditions were analyzed

together per MLO and about �3.7 million single cells per screen were clustered in a multivariate feature space using the FlowSOM

algorithm in R (Van Gassen et al., 2015). FlowSOMwas usedwith the Euclidean distance function. First, self-organizingmaps (SOMs)

were built with a high node number (e.g., 100 nodes) and the result was visualized as minimal spanning tree to identify single nodes

with large distances to the majority of nodes. These nodes contained cells with wrongly segmented MLOs, as confirmed by visual

image inspection, and all cells assigned to these nodes were removed from the dataset. The procedure was repeated until all cells

with wrongly segmented MLOs were excluded. For the final clustering the node number was reduced in such a way that cells within

one node had highly similar MLO morphological features while MLO features of cells between two nodes were noticeably different.

For splicing speckles, PML nuclear bodies and P-bodies the node number was set to 15 as this node number was sufficient to repre-

sent all possible phenotypes of these MLOs. For Cajal bodies and nucleoli 30 nodes were used since these MLOs have a higher

phenotypic variability.

Definition of perturbed MLO states
To identify gene perturbations that affected MLO formation we aimed to analyze two states of each MLO: an increased state which

includes a high intensity of the MLO marker within the segmented MLO and/or increased MLO area, and a decreased state where

the MLO is either smaller or absent, and/or the marker intensity is markedly decreased within detectable MLOs. In many cases, we

combined multiple phenotypic nodes with the strongest or weakest MLO feature values, respectively, into one perturbed MLO state,

e.g., ‘Increased nucleoli’. The decision which nodes to combine was made on the basis of the median feature strength of the nodes,

the absence of control cells in these nodes, and a visual inspection of single cells that clustered into these nodes. The decreasedMLO

state, meaning the absence or size reduction of a MLO can occur in two scenarios: 1) when the marker protein is downregulated to a

level where no MLOs are detectable anymore, and 2) when the marker protein is present yet no MLOs form (diffuse marker localiza-

tion). We observed downregulation and concomitant absence of MLOs for all five MLOs. However, only for P-bodies and nucleoli we

observed that the marker proteins were diffuse in the cyto- or nucleoplasm. We never observed cells with nucleoplasmic diffuse

SRRM2, PML or coilin. Thus, only P-bodies and nucleoli have a third MLO state termed ‘DDX6 cytoplasmic diffuse’ and ‘NPM nucle-

oplasmic diffuse’, respectively.

Identification of gene perturbations that induce stress granule formation
Single stress granules were segmented by pixel classification and SG features were extracted as previously described for the other

MLOs. To separate cells with segmented SGs from cells with falsely segmented cytoplasmic blebs, we first calculated the fraction of

cells per well that had at least two segmented objects (SGs or blebs). From these cells, we calculated the following five features per

well: The mean number of segmented objects, the median of the total area of segmented objects per cell, the median of the total

G3BP-1 intensity in segmented objects per cell, and the median of the G3BP-1 concentration around segmented objects per cell.

The latter is an important feature to distinguish segmented SGs from segmented blebs since the G3BP-1 signal around blebs is

high while it is very low around SGs. Perturbations with at least 5 percent of cells with at least two segmented objects were hierar-

chically clustered (Euclidean distance) and split into three groups based on the five features. Cells with segmented SGs show high

feature values for number, area and intensity but low G3BP-1 concentration around segmented objects. Blebby cells show low

feature values for number, area, and intensity but have high G3BP-1 concentration around segmented objects. The third group con-

sists of cell populations that show both SGs and blebs. To plot all wells we performed a principal component (PC) analysis on the

same five features but included all controls and perturbations. The first two PCs are plotted and colors indicate the three classes

as defined from the clustergram. The group of gene perturbations with high fractions of SGs was subsequently confirmed by visual

inspection of the images and false positives were excluded.
Molecular Cell 72, 1–15.e1–e5, December 20, 2018 e4



Please cite this article in press as: Berchtold et al., A Systems-Level Study Reveals Regulators of Membrane-less Organelles in Human Cells, Molecular
Cell (2018), https://doi.org/10.1016/j.molcel.2018.10.036
Cell cycle trajectories
Cell cycle trajectories (CCTs) were constructed with Cycler (Gut et al., 2015). In brief, for each CCT around 10,000 unperturbed cells

derived from three adjacent wells were pooled and sorted by Cycler in a multivariate feature space consisting of single cell measure-

ments of DNA (DAPI) content, EdU content, DNA replication pattern (texture), and nuclear area corrected for local cell crowding.

Classification of cells into discrete cell cycle phases (G1, S, G2) was achieved independently (see above) and was used to identify

the cell-cycle phase transition points along the CCT. Phenotypic features of cells orMLOswere plotted along the constructedCCT as

moving average of 200 cells unless otherwise stated.

Functional Enrichment Analysis
Functional enrichment analysis was performed with DAVID version 6.8. For each MLO, gene perturbations that were classified as hit

for any of the perturbed MLO states (increased MLO, decreased marker, or diffuse staining) were pooled and analyzed for GO-term

enrichments against the background of 1,323 genes in the siRNA library. From the functional annotation clustering only GO-terms or

KEGG pathways with a fold enrichment higher than 1.5 for at least 4 genes were considered. The network of GO-terms was created

with Cytoscape 3.5.1.

Two-dimensional maps of perturbed MLO states and cellular features
For the two-dimensional visualization of perturbedMLO states 453 gene perturbations that were classified as hit for at least one of the

following 13 perturbed MLO states were considered: 1) Increased nucleoli, 2) NPM nucleoplasmic diffuse, 3) decreased NPM, 4)

increased Cajal bodies, 5) decreased coilin, 6) increased PML nuclear bodies, 7) decreased PML, 8) increased splicing speckles, 9)

decreased SRRM2, 10) increased P-bodies, 11) decreased DDX6, 12) DDX6 cytoplasmic diffuse, and 13) formation of stress gran-

ules. For these 453 genes we combined the phenotypic scores (sum of the fraction of single cells per well that were assigned to the

nodes that reflect the perturbed MLO state) of the first twelve perturbed MLO states, excluding the Boolean classification for stress

granule formation. After z-score normalization of the values we applied t-Distributed Stochastic Neighbor Embedding (t-SNE)

dimensionality reduction (van der Maaten and Hinton, 2008) using the MATLAB drtoolbox and visualized the compiled dataset as

a two-dimensional map. Features describing the cellular state were not used to create the two-dimensional gene map but were

plotted on the generated map afterward. Cell features were calculated as median per well but only for the subpopulation of single

cells that were assigned to nodes, which reflect one of the aforementioned perturbed MLO states. Likewise, fractions of cells in

G1, S, or G2 phase were calculated for these subpopulations. In the case of genes with pleiotropic effects, cell features were calcu-

lated for each subpopulation (single cells with either perturbed MLO state) separately and values were then averaged. The resulting

cell features were z-score normalized to the mean values of unperturbed cell populations, which were calculated from 199 controls

wells (scrambled) in each of the three parallel screens.

Calculation of hierarchical interaction scores (HIS)
Hierarchical interaction scores (HIS) (Snijder et al., 2013) were calculated between 13 perturbedMLO states and 17 features describing

the cellular state derived from 1,326 gene perturbations and 218 controls. Feature values describing cell morphology, such as cell area,

shape, or protein content, were calculated asmeanperwell. From the cell cycle classifications of single cells fractions of cells perwell in

G1, S, or G2 phase were calculated. Each of the 17 features describing the cellular state was calculated separately for each of the three

screens and the resulting values were then averaged. After z-score normalization values were split at zero and positive values were

used as score for ‘increased’ states (e.g., increased cell area), while negative values were used as score for ‘decreased’ states. Per-

turbed MLO states were scored using the z-scored sum of fraction of single cells per well that was assigned to the respective pheno-

typic nodes. Instead of the Boolean classification for stress granule formation, the fraction of stress granule-positive cells per well of

positive scored genes was used and normalized to the minimal and maximal threshold of the HIS. HIS scores were calculated with the

following settings: The minimal threshold (intMin) was set to 1.5, the maximal threshold (intMax) was set to 5, and the step number was

set to 1,000 for single tail (one directional) distributions. 50 out of 435 possible pairwise combinations (functional interactions) between

the 30 MLO or cell features had a HIS greater than zero and were visualized as network using Cytoscape 3.5.1.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis was done using MATLAB unless otherwise stated. If statistical values were calculated they are indicated in the

Figure Legends. N represents the number of single cells unless otherwise stated and all exact values of n are indicated in the figures

or figure legends. Single cells were excluded as outlined in detail in STAR Methods.

DATA AND SOFTWARE AVAILABILITY

The raw images of the figures have been deposited in Mendeley Data (https://doi.org/10.17632/h8byr7w3sx.1). The full image

dataset (> 680,000 images, approx. 3.5 TB) is available upon reasonable request. The MATLAB code required for the pixel

classification-based MLO segmentation can be downloaded from GitHub (https://github.com/pelkmanslab/PixelClassification).

Additional information can be found in the ‘README’ file.
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Figure S1: Quality controls of the siRNA screens. Related to Figure 1. 

A) Network view of the subcellular localization of the 1,354 screened genes. Node sizes represent the 

number of genes in the library with the indicated GO-term for cellular component, and nodes are 

connected (gray lines) when at least five genes overlap. Nodes that represent one of the six screened 

MLOs are colored green. B) Diagram indicating the total numbers of segmented cells in all screens and 

the percentages of excluded cells due to various quality controls (for details see STAR Methods). C) 

Distribution of cell number per well. Only cells that passed the quality controls are used for further 

analysis. Control wells with unperturbed cells are highlighted in green (mock, n=57 wells) and blue 



(Scrambled siRNA, n=597 wells). Positive controls are highlighted in red (KIF11 kd, n=30 wells). 31 

perturbations (including KIF11) were excluded from further analysis since knock down of these genes 

resulted in low numbers of vital cells (n<246, orange dashed line). D) Heat map showing the correlations 

of cell cycle classifications between the three screens. The R-value was calculated on the fraction of cells 

per well classified as G1, S, and G2, respectively. E) Cell numbers of mock (green), negative (Scrambled, 

blue) and positive controls (KIF11, red) are plotted for each plate of the three siRNA screens. Note that 

plate 5, 11 and 17 do not contain control wells. F) Correlations of cell numbers per well between siRNA 

screens each. G) Fractions of cells in G1, S or G2 phase were calculated per well (n=4,632), and 

normalized so that their sum equals one. Control wells (scrambled, n=597) are highlighted in green. H) 

Normalized fractions of cells in G1, S or G2 phase per well are plotted as in S1G. The total cell number 

per well is indicated in color. I) Normalized fractions of cells in G1, S or G2 phase per well are plotted as 

in S1G. Gene perturbations with significant alterations in cell cycle fractions are shown in orange and 

were calculated as follows: The mean and standard deviation (std) of G1, S and G2 fractions were 

calculated from all scrambled control wells (n=597; meanG1=0.59, meanS=0.28, meanG2=0.1; 

stdG1=0.098, stdS=0.086, stdG2=0.04). Perturbations with any fraction more than 2 std away from the 

mean of controls are considered significantly (alpha=0.05) different. Gene perturbations that lead to G1 

arrest are encircled (light blue dashed line). J) Frequency plots of MLO numbers derived from more than 

700,000 unperturbed cells. Segmented nucleoli, Cajal bodies, PML nuclear bodies, splicing speckles and 

P-bodies were counted per nucleus and cytoplasm, respectively, and numbers are plotted as fractions. 

For the latter three MLOs, numbers were binned and bin edges are indicated. The frequency of MLO 

numbers is shown for all interphase cells (gray bars) and for cells classified as G1, S or G2, respectively. 

Total number of cells and average MLO number are indicated.  

 

 



 
 
Figure S2: Single cell clustering accounts for cell cycle-dependent heterogeneity in MLO 

morphology. Related to Figure 2. 

A) Clustergram of 1,000 subsampled single cell profiles of all 30 phenotypic nodes of the nucleoli screen. 

Unperturbed and perturbed cells were sorted together into the 30 nodes based on 10 z-scored feature 

values: 1) NPM concentration (conc.) around nucleoli, 2) Nuclear NPM conc., 3) Median NPM conc. in 

nucleoli, 4) Median NPM intensity in nucleoli, 5) Total NPM intensity in nucleoli, 6) Total area of nucleoli, 

7) Ratio area of nucleoli to nucleus, 8) Ratio nucleolar to nuclear NPM intensity, 9) Ratio NPM conc. in 

nucleoli to conc. around, and 10) Number of nucleoli. Gray circles indicate the total number of single cells 



clustered into each node. B) Morphological changes of cells over the cell cycle. Cellular features are 

plotted along a cell cycle trajectory (CCT) of more than 10,000 unperturbed cells. C) Morphological 

changes of P-bodies (PBs) over the cell cycle. PB features are plotted along a CCT of more than 9,000 

unperturbed cells. D) Cajal body features are plotted along a CCT of more than 10,000 unperturbed cells. 

E) Binning of unperturbed cells into three discrete cell cycle phases does not reveal the morphological 

changes of nucleoli during early S-phase. Boxplots show the same data as plotted in Figure 2C (green 

line, ‘Nucleolar to nuclear NPM intensity’) but binned into G1, S, and G2 cells, respectively. 

 

  



 
 

Figure S3: Identification of gene perturbations with perturbed MLO states. Related to Figure 3. 
A) Clustered median feature values of the 30 phenotypic nodes of the Cajal body (CB) screen (middle 

panel). The top panel indicates the total number of unperturbed and perturbed cells clustered into each 

phenotypic node. The lower panels (purple heat maps) show the node occupancy profiles for controls 

(Scrambled and mock) and two gene perturbations (n indicates the number of cells). Nodes that were 

combined to perturbed CB states are indicated, as well as the sum of the fractions of the perturbed cell 

populations that clustered into these nodes. B) Clustered median feature values of the 15 phenotypic 

nodes of the PML nuclear body (PML-NBs) screen (middle panel). The top panel indicates the total 

number of unperturbed and perturbed cells clustered into each phenotypic node. The lower panels 

(purple heat maps) show the node occupancy profiles for controls (Scrambled and mock) and two gene 

perturbations (n indicates the number of cells). Nodes that were combined to perturbed PML-NB states 



are indicated, as well as the sum of the fractions of the perturbed cell populations that clustered into these 

nodes. C) Clustered median feature values of the 15 phenotypic nodes of the splicing speckle screen 

(middle panel). The top panel indicates the total number of unperturbed and perturbed cells clustered into 

each phenotypic node. The lower panels (purple heat maps) show the node occupancy profiles for 

controls (Scrambled and mock) and two gene perturbations (n indicates the number of cells). Nodes that 

were combined to perturbed splicing speckle states are indicated, as well as the sum of the fractions of 

the perturbed cell populations that clustered into these nodes. D) Clustered median feature values of the 

15 phenotypic nodes of the P-body (PB) screen (middle panel). The top panel indicates the total number 

of unperturbed and perturbed cells clustered into each phenotypic node. The lower panels (purple heat 

maps) show the node occupancy profiles for controls (Scrambled and mock) and three gene 

perturbations (n indicates the number of cells). Nodes that were combined to perturbed PB states are 

indicated, as well as the sum of the fractions of the perturbed cell populations that clustered into these 

nodes. E) Gene perturbations ranked by the highest fraction of cells clustered into phenotypic node 5 of 

the CB screen. Two gene perturbations are highlighted and representative false colored images are 

shown on the right. Cells were stained with antibodies against coilin and cell and nuclear segmentation is 

shown in white. Scale bar 20 µm. F) Gene perturbations ranked by the highest fraction of cells clustered 

into phenotypic node 11 of the splicing speckle screen. Two gene perturbations are highlighted and 

representative false colored images are shown on the right. Cells were stained with antibodies against 

SRRM2 and cell and nuclear segmentation is shown in white. Scale bar 20 µm. G-H) Node occupancy 

profiles of three gene duplicates in the screens underscore the high technical reproducibility of the 

analysis method. G) Heat maps of the fraction of cells of three duplicate gene perturbations (SKP2, 

PPP1R8 and ANP32B) clustered into the phenotypic nodes of the five MLO screens. H) Heat map of the 

correlation coefficient (R-values) between the occupancy profiles of the three duplicate gene 

perturbations. 



 
Figure S4: Genetic and chemical perturbation of pre-mRNA splicing induces stress granule 

formation. Related to Figure 4.  



A) Clustergram of gene perturbations that have at least five percent of cells with at least two segmented 

objects (Stress granules (SGs) or cytoplasmic blebs). Gene perturbations were clustered based on the 

five indicated features per well, and grouped into three phenotypic classes: i) Perturbations with an 

increased fraction of cells with segmented SGs (orange), ii) perturbations with an increased fraction of 

cells with segmented blebs (blue), and iii) perturbations with an increased fraction of cells with both 

segmented SGs and blebs (purple). B) Principal component (PC) analysis was performed on the same 

features as used in A but for controls and perturbations. The first two PCs are plotted. Colors indicate the 

three classes as defined in A. Controls are shown in green. C) Representative images of cells with the 

indicated gene perturbations that lead to an increased fraction of cells with SGs and cytoplasmic blebs. 

The SG marker G3BP-1 is shown in magenta and nuclei in blue. Scale bar 20 µm. D) Representative 

images of cells with the indicated gene perturbations that lead to an increased fraction of cells with 

cytoplasmic blebs. The SG marker G3BP-1 is shown in magenta and nuclei in blue. Scale bar 20 µm. E) 
Images of A-431 (upper panel) and COS-7 (lower panel) cells treated with either DMSO or the indicated 

chemical compounds. Cells were stained with antibodies against the SG markers G3BP-1 (magenta) and 

PABP-1 (green). Scale bars 20 µm. F) Images of HeLa, A-431, and COS-7 cells treated with either 

DMSO or the indicated chemical compounds. RNA FISH was performed with probes against polyA-

mRNAs (green) and cells were stained with antibodies against the SG marker G3BP-1 (magenta). Scale 

bars 20 µm. 

 

  



 
 

Figure S5: Functional annotations of MLO regulators. Related to Figure 5. 

A) Network visualization of the functional annotation enrichments as shown in Figures 5A-5F. Nodes 

represent the indicated Gene Ontology (GO)-terms and are grouped and colored according to functional 

similarity. Node edges (gray lines) are shown if two annotations share more than 20 percent of genes. B) 

Functional annotation enrichments calculated for gene perturbations resulting in either stress granules 

(SGs), or up-/down-regulation of nucleoli, P-bodies (PBs), splicing speckles, Cajal bodies (CBs), and PML 

nuclear bodies (PML-NBs), respectively, that were omitted in A. Circle size represents fold enrichment of 

the indicated GO-term. C) KEGG pathway enrichments calculated for gene perturbations resulting in 

either SGs, or up-/down-regulation of nucleoli, PBs, splicing speckles, CBs, and PML-NBs, respectively. 

Bars are colored in dark gray if fold enrichment was higher than 1.5 (black dotted line) for at least four 

genes.  

  



 
Figure S6: Gene perturbations with pleiotropic effects on MLOs. Related to Figure 6. 

A) Gene t-SNE maps of 453 gene perturbations that are scored as hit for one or more perturbed MLO 

states. The distribution of eight perturbed MLO states is shown. Color indicates the respective phenotypic 

strength per gene. B) Gene t-SNE map of 453 gene perturbations that are scored as hit for one or more 

perturbed MLO states. Gene perturbations that resulted in increased fraction of cells with SGs are colored 

in red. C) Fractions of the 453 gene perturbations that display one or more perturbed MLO states. D) 

Clustered heat map of the phenotypic strength of the 128 gene perturbations that display more than two 

perturbed MLO states. The asterisk indicates that the phenotype of SG formation is Boolean, thus was 

set to the highest phenotypic strength and was not used for clustering. 



 
Figure S7: HIP kinases regulate PML-NB size and integrity. Related to Figure 7. 

A) DAPI and EdU intensity of single cells treated for 72 hours with siRNAs against HIPK1, DAPK2, 

MYST3 and PAK4, respectively. Color indicates total PML intensity in segmented PML-NBs as stds from 

the mean of all controls. Note that the total nuclear EdU intensity also includes weak signal of the protein 



stain succinimidylester. B) Cell cycle classifications for control cells and cells treated for 72 hours with 

siRNAs against HIPK2 and EWSR1, respectively. DAPI and EdU intensity of single cells are plotted as in 

Figure 7B. Colors indicate classification as G1, S or G2 cell. Box (dashed black outline) highlights cells 

with increased PML-NBs and reduced EdU incorporation as in Figure 7B. Note that the total nuclear EdU 

intensity also includes weak signal of the protein stain succinimidylester. C) STRING network visualization 

of 56 genes representing the overlap of 104 genes with a functional annotation for PML-NBs 

(GO:0016605~PML body, derived from QuickGO) with the set of 1323 screened genes. Edges (gray 

lines) indicate the relative physical and functional interaction strength derived from STRING database. 

Node colors indicate the effect of the respective gene perturbation on PML-NB morphology in stds from 

the mean of all perturbations and controls. Genes with a phenotypic strength higher than 2.5 stds from 

the mean are considered hits. D) Overexpressed GFP-tagged HIPK1 and HIPK2 partially colocalize with 

PML in PML-NBs. Cells were fixed after 24 hours of transfection and stained with antibodies against PML. 

Images showing the GFP signal (left column in both panels) are rescaled the same. Images showing the 

overlay of the GFP signal with PML (right column in both panels) are rescaled individually. Nuclear 

segmentation is shown in white. Scale bars 10 µm. E-G) Overexpressed GFP-tagged HIPK1 and HIPK2 

do not alter PML speckle abundance or intensity. E) Representative images of cells transfected for 24 

hours with GFP, GFP-HIPK1, or GFP-HIPK2, and stained with antibodies against PML. Nuclear 

segmentation is shown in white. Scale bar 10 µm. F) Number of segmented PML-positive speckles in 

control cells (gray boxes, n=1,445-4,029) and cells transfected (green boxes) for 24 hours with GFP 

(n=2,621), GFP-HIPK1 (n=975), and GFP-HIPK2 (n=1,143), respectively. G) Total PML intensity in 

segmented PML-positive speckles of the same cells as quantified in F. H-J) Overexpressed GFP-tagged 

HIPK1 and HIPK2 dissolve Sp100-positive speckles in a concentration-dependent manner. H) 

Representative images of cells transfected for 24 hours with GFP, GFP-HIPK1, or GFP-HIPK2, and 

stained with antibodies against Sp100. Nuclear segmentation is shown in white. Scale bar 10 µm. I) 

Probability distributions of the number of nuclear Sp100 speckles in control cells (gray) and cells 

transfected for 24 hours with GFP, GFP-HIPK1, and GFP-HIPK2, respectively. Numbers of quantified 

cells are indicated. J) Fractions of cells with no nuclear Sp100 speckles. Cells were treated as above and 

fractions were calculated for GFP-positive cells (GFP control: n=2,967, GFP-HIPK1: n=806, GFP-HIPK2: 

n=1,387). The fractions were calculated as a function of nuclear GFP concentration (sliding window 

method on log10-transformed intensity values) and smoothed afterwards. 
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