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SUMMARY

A central question in biology is whether variability be-
tween genetically identical cells exposed to the same
culture conditions is largely stochastic or determin-
istic. Using image-based transcriptomics in millions
of single human cells, we find that while variability
of cytoplasmic transcript abundance is large, it is
for most genes minimally stochastic and can be pre-
dicted with multivariate models of the phenotypic
state and population context of single cells. Compu-
tational multiplexing of these predictive signatures
across hundreds of genes revealed a complex regu-
latory system that controls the observed variability of
transcript abundance between individual cells.
Mathematical modeling and experimental validation
show that nuclear retention and transport of tran-
scripts between the nucleus and the cytoplasm is
central to buffering stochastic transcriptional fluctu-
ations inmammalian gene expression. Our work indi-
cates that cellular compartmentalization confines
transcriptional noise to the nucleus, thereby prevent-
ing it from interfering with the control of single-cell
transcript abundance in the cytoplasm.

INTRODUCTION

Gene expression in isogenic cells exposed to the same condi-

tions is heterogeneous, a phenomenon referred to as gene

expression noise (Eldar and Elowitz, 2010; Raj and van Oude-

naarden, 2008). The origin of this noise can be divided between

intrinsic and extrinsic sources (Elowitz et al., 2002). Intrinsic

noise is seen as the inherent consequence of stochastic fluctua-

tions in biochemical reactions and interactions between the

components that transcribe and translate genes into mRNA

and proteins, respectively (Eldar and Elowitz, 2010; Raj and

van Oudenaarden, 2008). For instance, stochastic switching of

promoters between a closed, transcription-prohibiting state

and an open, permissive state can lead to bursts in transcription

and consequently large variations in transcript abundance be-

tween individual cells (Golding et al., 2005; Raj et al., 2006; Suter

et al., 2011; Zenklusen et al., 2008). Extrinsic noise is defined as

noise that originates from upstream variations in the cellular state
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that results in higher or lower rates of gene expression or degra-

dation and is usually the major source of cell-to-cell variability

(Raser and O’Shea, 2005; Snijder and Pelkmans, 2011). Extrinsic

noise is not necessarily of a stochastic nature, but is often

considered and modeled stochastically given the complexity of

the involved processes, an apparent stochasticity in distribu-

tions of single-cell measurements, and an assumed inability to

predict these variations at the single-cell level.

In human cells, transcript abundance scales with cellular vol-

ume (Kempe et al., 2015; Padovan-Merhar et al., 2015), which

varies between single cells of the same population. Cellular vol-

ume is thus an important source of extrinsic noise in gene

expression, as has been observed previously in yeast (Newman

et al., 2006; Raser and O’Shea, 2004). Similarly, mitochondrial

content, which is known to vary between individual mammalian

cells, is a source of extrinsic noise (das Neves et al., 2010). In

proliferating mammalian cells that adapt to their multicellular

context, cell-to-cell variability in these and other properties is

strongly influenced by the available space to expand cell surface

and volume, the relative location of a cell within a population, its

local crowdedness, the amount and type of physical force it ex-

periences, the extent to which it faces empty space, and its po-

sition in the cell cycle (Dupont et al., 2011; Engler et al., 2006;

Frechin et al., 2015; Gut et al., 2015). Since numerous signaling

pathways that sense the cellular state and phenotypic properties

of single cells and their microenvironment exist, this can result in

large-scale adaptation of the transcriptome in single isogenic

cells experiencing the same culture conditions. This raises the

question of to which extent variability in transcript abundance

in mammalian cells is of a deterministic nature and can be pre-

dicted once the relevant variables of single cells that drive

such adaptation are known. Particularly in the context of devel-

opment and tissue homeostasis, where tight control of gene

expression at the single-cell level is required, such variables

could influence cell-fate decisions that may have previously

been considered fully stochastic (Arias and Hayward, 2006;

Graf and Stadtfeld, 2008; Macarthur et al., 2009). Furthermore,

if most variability in transcript abundance in mammalian cells

can be predicted, it raises the question of how stochastic fluctu-

ations that arise during transcription are effectively filtered out

while deterministic variability is maintained.

Addressing these questions requires highly accurate mea-

surements of single-cell transcript abundance. A suboptimal ef-

ficiency in detecting an individual transcript molecule in a single

cell yields for most transcripts single-cell distributions that are
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Figure 1. Image-Based Transcriptomics of Cell-to-Cell Variability in Cytoplasmic Transcript Abundance

(A) Scheme of in situ detection of single transcript molecules (spots per cell).

(B) Left: a HeLa cell population stained for cytoplasmic UBE2C transcripts (bDNA sm-FISH in green). Right: visualization of the quantified cytoplasmic transcript

abundance (spots per cell) by pseudo-coloring single-cell segmentations. Cells discarded by machine learning (SVM) are gray.

(C) Classification of single-cell distributions of cytoplasmic transcript abundance in HeLa cells. Genes are binned by their mean spot number per cell. Hatched

pattern indicates occurrence of class 2 and class 3 in different subsamples of the observed distributions.

(legend continued on next page)
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largely determined by random detection error (Shapiro et al.,

2013). Since single-cell RNA sequencing has detection effi-

ciencies between 5%–20% (Deng et al., 2014; Grün et al.,

2014), it cannot be used for sensitive analysis of sources of

cell-to-cell variability in transcript abundance. Equally important

for obtaining highly accuratemeasurements for large numbers of

single cells is to avoid sampling bias of the cellular states andmi-

croenvironments experienced by single cells in a population

(Battich et al., 2013). Furthermore, it is essential to quantify fea-

tures of the cellular state and microenvironment of the same sin-

gle cell in which transcript abundance is beingmeasured. Finally,

such measurements are ideally obtained for a large number of

genes to compare distributions and identify common and

gene-specific variables that determine cell-to-cell variability in

transcript abundance.

Here, we applied image-based transcriptomics, a high-

throughput automated single-molecule fluorescence in situ

hybridization (sm-FISH) method that we recently developed

(Battich et al., 2013), which meets these requirements. Using

large-scale single-cell datasets acquired with this approach,

we show that cell-to-cell variability in cytoplasmic transcript

abundance in human adherent cells can be accurately predicted

at the single-cell level with a multivariate set of features that

quantify properties of the cellular state and microenvironment,

and we experimentally verify some of the underlying causality.

We find that for most genes, the unexplained variability in cyto-

plasmic transcript abundance approaches a limit of minimal sto-

chasticity imposed by a Poisson process. The few genes that

deviate from this limit also show a high amount of explained vari-

ability, suggesting high-level regulation rather than high stochas-

ticity. Through computational multiplexing, we uncover the

existence of multilevel transcript homeostasis in single cells to

achieve specific adaptation of transcript abundance to the

cellular state and microenvironment, according to function of

the proteins they encode. Finally, we show that the mammalian

nucleus acts as a potent and global buffer to stochastic fluctua-

tions arising from bursts in gene transcription by temporally re-

taining transcripts in the nucleus. This explains how cytoplasmic

transcript abundance in mammalian cells can be minimally sto-

chastic, while deterministic variation is maintained.

RESULTS

Single-Cell Distributions of Cytoplasmic Transcript
Abundance in a Human Cancer-Derived Cell Line and
Primary Keratinocytes
To study cell-to-cell variability of transcript abundance in human

cells, we applied image-based transcriptomics to HeLa cells and

freshly isolated primary keratinocytes. This provides high-quality

images of large numbers of single cells in which each transcript is

visible as a bright spot that can be robustly detected, resolved
(D) Gene examples with single-cell cytoplasmic transcript abundance distributio

(E) Coefficient of variation per gene versus cytoplasmic transcript abundance (m

dashed line defines outliers exceeding one SD of a LOESS fit.

(F) Enrichment for cytoplasmic transcript abundance distribution classes amon

below 0.05.

See also Figure S1.
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from other spots, and assigned to the corresponding cell using

fully automated computer vision algorithms (Battich et al.,

2013; Stoeger et al., 2015) (Figure 1A). As a result, accurate

and reproducible transcript counts in the cytoplasm of millions

of single cells and thousands of genes are obtained (Battich

et al., 2013). When visualized across cell populations, this re-

veals gene-specific patterns in single cells (Figures 1B and S1A).

In both cell types, we identified, in a semi-automated manner,

five classes of single-cell distributions of cytoplasmic tran-

script abundance across 932 genes (see http://image-based-

transcriptomics.org). The vast majority of genes show a

unimodal distribution (Figures 1C, 1D, and S1B), which shifts

from a one-tailed distribution (class 2) to a skewed two-tailed

distribution (class 3) as the mean cytoplasmic transcript abun-

dance increased. Genes displaying a skewed two-tailed distri-

bution with a flattened peak (class 4) enrich for genes acting

during the replication of DNA (8 of 9 genes in HeLa and 5 of 7

genes in keratinocytes). Rarely (1.6% in HeLa and 2.8% in kera-

tinocytes), bimodal distributions were observed, with either one

mode representing no expression and the other mode expres-

sion (class 1), or with both modes representing two different

levels of expression (class 5). This low fraction of bimodality

compared to stimulated dendritic cells (Shalek et al., 2013) likely

results from the fact that cells were unperturbed and did not

experience a sudden change in culture conditions (e.g., addition

of growth factor after serum starvation). Concordantly, the ma-

jority of the genes that show bimodal distributions under these

culture conditions act during the M phase of the cell cycle

(60.0% of HeLa class 5, 71.4% of keratinocytes class 1, and

50.0% of keratinocytes class 5). We also noticed that the coeffi-

cient of variation (CV) in single-cell transcript abundance

decreased in both cell types monotonically from �2 to �0.3 as

the mean transcript abundance increased, with only a few outlier

genes (3%–6%) that show a higher CV than the bulk (Figure 1E).

Expectedly, these outliers are enriched in the one-tailed and

bimodal distributions of cytoplasmic transcript abundance (clas-

ses 1, 2, and 5) (Figure 1F).

Cytoplasmic Transcript Abundance in Single Human
Cells Can Be Predicted and Is Minimally Stochastic
In addition, we collected from each single cell a multivariate set

of 183 features that quantify properties of cell and nucleus shape

and area, of protein, DNA, and mitochondrial content and

texture, and of the extent of local cell crowding, number of neigh-

bors, and relative location to other cells and to empty space in

the cell population (Figure 2A). For genes that are expressed

(Figure S2A), we observed that many of these features show a

correlation with transcript abundance (Figure S2B), prompting

us to investigate the extent to which these features can collec-

tively predict cytoplasmic transcript abundance in single cells.

To address this, we learnt data-driven models for each gene
ns. For more examples, see http://image-based-transcriptomics.org.

ean spots per cell), colored according to their distribution class as in (B). The

g outlier genes over non-outlier genes. Asterisks indicate Fisher’s exact test

http://image-based-transcriptomics.org
http://image-based-transcriptomics.org
http://image-based-transcriptomics.org
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Figure 2. Predicting Cytoplasmic Transcript Abundance in Single Cells within a Population

(A) Features describing cellular state, population context, and microenvironment of single cells (right), the loadings of the first six principal components (middle),

the construction of multilinear regression (MLR) models, and the calculation of prediction strength (pS).

(B) Prediction of single-cell transcript distributions of KIF11, ERBB2, and CLOCK in HeLa cells by MLR models and three-state stochastic models.

(C) Distribution of prediction strengths (pS) for 583–598 genes using MLR models (black filled bars) and three-state stochastic models (dashed open bars). The

size of each bin is 0.1.

(D) Prediction of KIF11, ERBB2, and CLOCK cytoplasmic transcript abundance in single HeLa cells by MLR models and three-state stochastic models.

(E) Visualization of measured and predicted single-cell cytoplasmic transcript abundance within a population of HeLa cells.

See also Figure S2.
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(B) Correlation between explained variability (h2
Explained) and unexplained variability (h2

Unexplained) for single genes in HeLa cells. Gray area shows 90%confidence
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Explained and h2

Unexplained of all genes. Blue genes show both high explained and unexplained variability and are enriched

in immediate early response genes. Red genes have higher explained than unexplained variability and are enriched in cell-cycle genes. Green genes are the

lowest abundant genes, with a spot count per cell barely above background (3–4 spots per cell).

See also Figure S3.
on one dataset using multilinear regression (MLR) in a principal

component (PC)-reduced multidimensional space of the multi-

variate feature set (Figure 2A). Generally, MLRmodels consisted

of �20 PCs, which quantify a variety of different aspects of indi-

vidual cells. For example, the first six PCs of HeLa cells consist of

features of local cell crowding, distance of cells to each other,

their number of neighbors, distance to a cell islet edge, cell

and nuclear area, cell volume (as measured by protein content,

see Figure S2C), mitochondrial content, DNA content (indicating

position in the cell cycle), nuclear morphology, cell shape, and

the activity (transcript abundance) of neighboring cells (Fig-

ure 2A). In keratinocytes, the first six PCs are highly comparable

(Figure S2D). Higher PCs used in the MLR models often contain

highly specific properties related to cell shape, texture, or micro-

environment (data not shown).

Next, we tested the performance of each MLR model by

directly predicting cytoplasmic transcript abundance in each

single cell of an independently obtained (�3 weeks later) biolog-

ical replicate dataset for the same gene and comparing single-

cell predictions with single-cell measurements. The models

accurately reproduced single-cell distributions of cytoplasmic

transcript abundance (Figures 2B, S2E, and S2F). More impor-

tantly, they also achieved high prediction strength (pS; coeffi-

cient of determination corrected for technical variability, see

the Supplemental Experimental Procedures) at the single-cell

level (Figures 2C–2E and S2G). The median pS was slightly

higher in monoclonal HeLa cells (0.503) than in freshly isolated

primary keratinocytes (0.400), possibly due to uncontrolled clon-

ality of the latter cells. A partial least-squares regression, as well

as a non-linear approach using random forests (Liaw and
1600 Cell 163, 1596–1610, December 17, 2015 ª2015 Elsevier Inc.
Wiener, 2002) on the non-transformed multivariate feature set,

achieved virtually identical results (Figure S3A), indicating the

robustness of these statistical models.

The pS increased as mean cytoplasmic transcript abundance

increased, with amedian pS of 0.29 for low-abundant transcripts

(3.7–7.4 mean transcripts per cell) and a median pS of 0.71 for

high-abundant transcripts (>149 mean transcripts per cell; see

Figure S2H). Furthermore, as the examples of KIF11 (a kinesin

involved in spindle formation and chromosome positioning dur-

ing mitosis), ERBB2 (a receptor tyrosine kinase that dimerizes

with epidermal growth factor receptors), and CLOCK (a tran-

scription factor that regulates circadian rhythms) show, the

MLRmodels predict the observed patterns of single-cell expres-

sion in cell populations remarkably well, even for low-abundant

transcripts (Figures 2D, 2E, and S2G). Naturally, three-state sto-

chastic models of transcription can only reproduce distributions

(Figures 2B, S2E, and S2F) and do not have any single-cell pre-

diction strength (Figures 2C–2E and S2G), nor can they repro-

duce single-cell expression patterns in cell populations (Figures

2E and S2F).

Strikingly, when we quantified the amount of unexplained

variability in cytoplasmic transcript abundance (see the Supple-

mental Experimental Procedures), we observed that it ap-

proaches a limit of minimal stochasticity as described by a

simple one-step Poisson process, also for low-abundance tran-

scripts (Figures 3A and S3A). Although some genes did not fall

on this limit, we observed that genes whose unexplained vari-

ability was furthest away from the Poisson limit, also displayed

the highest amount of explained variability (outliers of both

increased h2Explained and h2Unexplained) (Figures 3B and S3B). This
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Figure 4. Causality between Predictors and Single-Cell Transcript Abundance
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variance.

(B) Images showRELA transcripts (green) and DAPI (blue) of single constrained cells grown on differently sizedmicropatterns and an unconstrained cell grown on

a 10,000-mm2 micropattern. Segmented cell outlines are white lines. Scale bar, 16 mm.

(legend continued on next page)
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shows that also for these genes, cell-to-cell variability in cyto-

plasmic transcript abundance originates largely from regula-

tory processes rather than from intrinsic stochastic sources

(Figure 3B).

Thus, cytoplasmic transcript abundance of genes can be

accurately predicted at the single-cell level in mammalian

adherent cells, both in a cancer-derived laboratory-adapted

cell line and in primary cells freshly isolated from a human donor.

Single-cell prediction is achievedwith features that quantify a va-

riety of different aspects of the phenotypic state of individual

cells, their population context, and their microenvironment. The

amount of cell-to-cell variability that these features cannot pre-

dict approaches for most genes a single-step Poisson limit.

This suggests that somewhere along the life of an RNA molecule

in mammalian cells, noise buffering occurs to ensure that cyto-

plasmic transcript abundance becomes minimally stochastic.

Causality between Predictors and Single-Cell
Transcript Abundance
High prediction strength indicates a high correlation between

predictors and single-cell transcript abundance, but does not

reveal the presence or direction of causality. To reveal the domi-

nant direction of causality in this situation, we used four orthog-

onal approaches.

First, we applied Bayesian network inference on the initial da-

tasets and on bulk nascent transcript synthesismeasurements in

single cells (Figures S4A–S4C). For 83% of the genes in which

Bayesian networks could reproducibly be inferred, cytoplasmic

transcript abundance was placed downstream of one or multiple

single-cell features (Figure S4A). The remaining genes (17%)

were placed in between, being downstream of cell area or pro-

tein content and upstream of DNA content or cell crowding,

which correlated with gene function (Figures S4B and S4C).

Furthermore, this revealed that cell area and protein content

(cell volume) are major determinants of bulk nascent transcript

synthesis and cytoplasmic transcript abundance, which are in

turn determined by population context effects that arise from

the number of cells seeded and DNA content, which reflects po-

sition in the cell cycle (Figure S4D).

Second, we grew cells on micropatterns, which constrain the

available area for a single cell to spread on, resulting in a strong

reduction in the cell-to-cell variability of many single-cell fea-

tures, particularly in cell size and morphology (Figures 4A and

4B). Based on this, we used the MLR models to predict which
(C) Boxplots showmeasured single-cell spot count distributions ofRELA transcrip

and 694, respectively). Spot count distribution in constrained cells predicted by

Poisson noise is also shown.

(D) Kolmogorov-Smirnov distance (KS) between measured single-cell transcript

unconstrained and constrained cells.

(E) Heatmaps of mean cytoplasmic transcript abundance at various time points a

boxes highlight the highest observed mean cytoplasmic transcript abundance.

(F) The pS in EGF-induced cells at peak expression (blue dots) is higher than in uni

(gray-shaded contoured area).

(G) Left: single-cell cytoplasmic transcript abundance distributions for JUN in unin

predicted with MLR models (black). Right: prediction of EGF-induced cytoplasm

from a replicate experiment or from uninduced cells.

(H) As in (G), except for FOS transcripts.

See also Figure S4.
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genes would display the strongest reduction in variability in cyto-

plasmic transcript abundance in cells grown on the smallest

micropatterns, and selected from these nine genes covering

different biological processes (Figure 4A). For all genes, as

exemplified by RELA, a subunit of the major transcription factor

NF-kB, we observed that constraining the phenotypic state of

single cells results in a strong reduction of cell-to-cell variability

in cytoplasmic transcript abundance, approaching a Poisson

limit (Figures 4C and 4D). Strikingly, the small amount of remain-

ing cell-to-cell variability in transcript abundance was accurately

predicted based on the small amount of phenotypic variability re-

mainingbetween single cells grownonmicropatterns (Figure 4C).

This shows that constraining single-cell features directly con-

strains cell-to-cell variability in transcript abundance.

Third, we performed systematic RNA interference against 367

genes. This did not reveal any relationship between the extent to

which two dominant features, nuclear area and cell crowding,

correlate with cytoplasmic transcript abundance of a gene and

the effect that silencing of this gene had on these two features

(Figure S4E). The few genes whose silencing resulted in strong

effects were all essential for cell viability, leading to reduced pop-

ulation sizes (Figure 4D), which indirectly changes nuclear area

and cell crowding.

Fourth, we performed gene induction experiments. Cells

grown for 72 hr were serum starved for 24 hr and subsequently

treated with epidermal growth factor (EGF). At 20, 40, and

80 min after induction, we fixed cells and performed image-

based transcriptomics on eight genes induced by EGF. We

then learnt MLR models on each time point after induction, as

well as on the serum-starved non-induced state, and used these

to predict single-cell cytoplasmic transcript abundance in a repli-

cate experiment (Figure 4E). While pS was lower in the non-

induced state or in the presence of serum, it was higher at

peak expression level following induction, matching the global

trend that pS scales with transcript abundance (Figures 4F and

S4F). As shown for JUN and FOS, two immediate early response

genes, the MLR models accurately reproduced the change in

distributions of cytoplasmic transcript abundance during induc-

tion, including the emergence of bimodality, as well as single-cell

patterns of EGF-induced gene expression in cell populations

(Figures 4G, 4H, and S4G). Strikingly, even MLR models learnt

on serum-starved non-induced cells were able to predict the

single-cell expression patterns in induced cell populations,

when correcting for the difference in mean expression levels
ts in unconstrained cells and constrained on 300-mm2micropatterns (n = 1,874

the MLR model from unconstrained cells and a distribution arising only from

distributions and Poisson distributions (n = 10,000) of nine different genes in

fter serum starvation and addition of EGF and of the pS of MLR models. Blue

nduced cells (red dots), as expected from the increase in transcript abundance

duced cells (red) and in cells 40min after EGF induction (blue). Distributions are

ic transcript abundance of JUN at the single-cell level with MLR models learnt
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(Figures 4G and 4H). This shows that it is largely the predeter-

mined phenotypic state and microenvironment of a single cell

that determines its response to EGF.

Together, this shows that in human adherent cells grown in

culture, the emergence of heterogeneity in phenotypic state,

population context, and microenvironment of single cells is the

dominant source of cell-to-cell variability in cytoplasmic tran-

script abundance, making it for most genes largely predictable.

This does not only apply to cells at quasi steady-state continu-

ously grown in serum but also, and more profoundly, during an

acute induction of gene expression by EGF, also when this leads

to bimodal gene expression.

Computational Multiplexing of Cytoplasmic Transcript
Abundance Reveals Multilevel Transcript Homeostasis
in Single Cells
Next, we studied the biological information that the MLR models

contain, taking advantage of their generally high prediction

strength at the single-cell level. This allowed us to perform

computational multiplexing (Figure 5A), in which we predicted

the transcript abundance of one gene in each cell of a population

in which we had measured the transcript abundance of another

gene. In this manner, we could calculate pairwise correlations

between the predicted and measured single-cell transcript

abundances for �2.5 3 105 gene-gene combinations across

�5,000 single cells (Figures 5A and S5A). We then calculated

the similarity between two genes in their pairwise single-cell cor-

relations with all other genes and created a similarity matrix for

each cell type. The matrices contained a high degree of modality

with various sub-clusters (Figure 5A; Table S1), presenting a sys-

tems-level map of single-cell transcript homeostasis in human

adherent cell populations (Figures S5B and S5C).

To visualize this map, we created a gene interaction network

for each cell type, in which two genes are connected when

they were within the top 2% highest similarity scores (Figures

5A, 5B, and S5A). To reveal patterns in these networks, we first

looked at the two most dominant predictors: cell area and cell

volume. Plotting the ratio of the correlation of cytoplasmic tran-

script abundance with these two predictors on the networks re-

vealed areas of genes with a higher correlation to cell volume or

higher correlation to cell area (Figures 5B and S5D; Data S1). The

latter are strongly enriched in genes encoding for proteins that

contain a signal peptide, a transmembrane domain, or that are

N-glycosylated (Figure 5B), as well as for cytosolic proteins

with important membrane-related functions (data not shown).

This indicates the existence of mechanisms that allow distinct

adaptation of transcript abundance to the volume or surface
Figure 5. Multilevel Transcript Homeostasis in Single Mammalian Cell

(A) Gene-specificMLRmodels are applied to other genes in a pairwisemanner, an

all other genes.

(B) Networks formed by connecting 2 genes (nodes) that show the 2% highest s

transcript abundance with cell area or with cell volume. Bar graphs show functiona

than cell volume.

(C) Genes in the networks colored according to max-normalized correlation bet

indicate sub-clusters K1-3 and H1-2.

(D) Enlargement of sub-clusters K1 andK2 present in keratinocytes. Heatmap show

selected individual features. Grouping of features as in (C).

See also Figure S5, Table S1, and Data S1.
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area of a single cell, depending on whether it encodes for a pro-

tein with cytosolic or membrane-related functions.

Next, we plotted on the networks the mean absolute correla-

tions of transcript abundance to selected sets of features related

to the population context, to cell size and shape, DNA content,

and neighbor activity (Figure 5C). This revealed multiple sub-

regions in the networks that consist of groups of genes whose

cytoplasmic transcript abundance is adapted in specific ways

to different combinations of features. For example, a particularly

outstanding sub-cluster present in both networks (K1 in kerati-

nocytes and H1 in HeLa; see Figures 5D and S5E) shows high

correlations with features of DNA content and texture and nu-

clear morphology and is enriched in genes that function in the

cell cycle.

We also noticed that within dense regions of the networks,

highly differentiated and specific adaptation is visible. For

instance, sub-clusters K2 and K3 lie next to each other in the ker-

atinocyte network (Figure 5C). Sub-cluster K2 consists of genes

whose transcript abundance shows a specific and strong corre-

lation with neighbor activity and contains immediate early genes

(e.g., JUN), including secreted molecules (e.g., VEGFA and

DKK1) (Figure 5D). A similar sub-cluster was also found in

HeLa cells (H2; see Figure S5E). H2 contains genes that display

high levels of both explained and unexplained variability

(compare to Figure 3B), including the early response genes

in the EGF induction experiment (such as JUN, FOS, and

NR4A2). This indicates that both cell types show a highly variable

expression of a group of genes that respond quickly to signals in

a correlated manner determined by the activity of cell neighbors,

suggesting the involvement of paracrine signaling (Avraham and

Yarden, 2011). Sub-cluster K3 consists of genes whose single-

cell transcript abundance shows strong correlation with multiple

sets of selected features, including those of the population

context, of cell size and shape, of mitochondrial abundance, nu-

clear morphology and also neighbor activity (Figure 5D). It con-

tains 10 of the 13 mitochondrially encoded protein-coding

genes, indicating that multilevel control of single-cell transcript

abundance also occurs for genes not transcribed in the nucleus.

The high degree of modularity and the presence of multiple

subgroups of genes whose transcript abundance is adapted in

highly differentiated and specific ways in single cells exposed

to the same conditions, demonstrates the existence of a com-

plex multilevel transcript homeostasis system that drives cell-

to-cell variability in gene expression. This ensures that levels of

transcripts are precisely adapted to the physiological state of a

single cell and its microenvironment according to the function

of the RNA or the protein they encode for.
s

d genes are clustered by their similarity in being predicted by theMLRmodels of

imilarities. Node color indicates genes with higher correlation of cytoplasmic

l annotation enrichments for geneswith a 2-fold higher correlation with cell area

ween cytoplasmic transcript abundance and sets of features. Green borders

smax-normalized correlation between cytoplasmic transcript abundance and
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Transcript Retention in the Nucleus and Export into the
Cytoplasm Efficiently Buffers Stochastic Bursts in Gene
Transcription
A high degree of predictability in cytoplasmic transcript abun-

dance at the single-cell level contradicts the view that it arises

from stochasticity in gene transcription, caused by, among

others, the stochastic switching of promoters between a closed

transcription-prohibiting state and an open permissive state.

However, we realized that bDNA sm-FISH, unlike most methods

that quantify single-cell transcript abundance, specifically de-

tects transcripts in the cytoplasm. This suggests that random

fluctuations in transcript abundance arising from bursts in tran-

scription are filtered out during nuclear processing and/or export

from the nucleus to the cytoplasm (Singh and Bokes, 2012;

Xiong et al., 2010).

To test if nuclear compartmentalization can theoretically act

as a buffer of transcriptional noise in mammalian cells, we

developed an agent-based single-cell mathematical model

and performed computer simulations (Figure 6A). In the model,

gene activation and transcription is governed by a three-state

stochastic model (Neuert et al., 2013; Raj and van Oudenaar-

den, 2008), in which the gene switches randomly between an

‘‘off’’ state (S3) and a transcription-competent state (S2), which

switches randomly to a transcription-initiated (S1) or ‘‘on’’ state

and back. Once transcription is initiated, RNA synthesis occurs

at randomly fluctuating transcription rates. The time spent in

the ‘‘on’’ and ‘‘off’’ states can be varied. Each transcript is

then retained for a certain amount of time in the nucleus, after

which it is transported into the cytoplasm. Nuclear retention

time is used as a general term to comprise the various events

between birth of a single transcript molecule and its emergence

into the cytoplasm, including chromatin dissociation, nuclear

diffusion, processing, and binding to and transport across the

nuclear pore. It is modeled as a combination of a 3D diffusion

process and a probabilistic interaction with the nuclear pore,

and can be varied. Nuclear degradation of transcripts is not

considered. Finally, transcript degradation in the cytoplasm is

modeled as a single probabilistic function that can also be

varied (Figure 6A). To quantify the effect that nuclear retention
Figure 6. Nuclear Compartmentalization Efficiently Buffers Stochastic

(A) Mathematical model separated in gene, nucleus, and cytoplasmmodules of ge

transcript degradation.

(B) The effect of nuclear retention on how variation between transcript synthesis

(C) Distribution of nuclear retention times of transcripts of 282 genes induced by LP

panels display kinetics for FOS and JUN and derived t1/2 of gene induction, nucl

(D) Left: Kolmogorov-Smirnov distances (KS) of dTs (synthesis) distributions to a P

(export) distributions to a Poisson distribution (using ‘‘on’’ and ‘‘off’’ times boxed

indicates regions in which theKS distance is 0.1. Right: medianKS distance of dTe
of retention time, as well as of specific combinations indicated with white dots o

(E) Model-predicted CV2 of single-cell nuclear (left, black) and cytoplasmic (right,

interquantile range. Measured CV2 in both compartments are solid dots.

(F) MLRmodel prediction strengths (pS) of measured single-cell transcript abunda

based model (shaded area).

(G) Time-lapse imaging of doxycycline-induced transcription of HeLa 11ht MS2 ce

of transcripts at the nuclear envelope.

(H) Autocorrelation function of mRNA spot counts in the nucleus and cytoplasm

p < 0.05 for all t > 0 min.

See also Figure S6, Movie S1, and Data S2.
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has on the amount of stochasticity in transcript abundance in

this model, time distributions between simulated transcript

production events (dTs) and between nuclear export events

(dTe) are obtained, and the distance of these distributions to

a Poisson distribution determined (Figure 6B). Physiological

boundaries for nuclear retention times of transcripts were ob-

tained from a recently collected high-quality RNA-seq dataset

on lipopolysaccharide (LPS)-induced transcription in mouse

bone marrow-derived macrophages (Bhatt et al., 2012). From

282 genes, we derived a nuclear retention time of newly syn-

thesized transcripts between �5–90 min, with a median of

�20 min (Figure 6C). Because these genes are enriched in

fast-responding genes during stress signaling in macrophages,

these nuclear retention times are an underestimation for most

other genes.

We performedmodel simulations with different burst-like gene

transcription scenarios, ranging from transcription ‘‘on’’ times

(corresponding to state S1 in the model of the gene module; Fig-

ure 6A) between 5–20 min and ‘‘off’’ times (corresponding to

state S2 or S3 in Figure 6A) between 5–60 min, which lie in the

range of observed bursting dynamics of endogenous genes in

mammalian cells (Ochiai et al., 2014). Longer ‘‘on’’ times do

not reflect burst-like gene expression and are already close to

a Poisson limit during synthesis in the nucleus (Figure 6D), while

longer ‘‘off’’ times reflect, in our opinion, non-stochastic regula-

tion, such as refractory periods, feedbacks, or oscillating cellular

states (Sanchez and Golding, 2013). Within these boundaries,

variability in transcript synthesis is far away from the Poisson

limit (Figure 6D). However, export of the produced transcripts

into the cytoplasm was efficiently converted into a Poisson pro-

cess as mean retention time increased (Figures 6D and S6A).

Over all bursting scenarios, a mean nuclear retention time of

15 min was able to buffer �57% of the stochastic fluctuations

introduced by bursts, which increased to �90% at 40 min of

mean nuclear retention time. Importantly, when we modeled

bursting scenarios with ‘‘on’’ and ‘‘off’’ times of �5.5 min (sce-

nario 1 in Figure 6D), we observed �50% buffering already at a

mean nuclear retention time of 6 min. This corresponds to the

measured induction and nuclear retention times of FOS and
Bursts in Gene Transcription

ne transcription, transcript processing, diffusion, retention, nuclear export, and

events (dTs) converts to variation between transcript export events (dTe).

S in mouse bone-marrow-derived macrophages (Bhatt et al., 2012). The lower

ear retention, and degradation.

oisson distribution for various ‘‘on’’ and ‘‘off’’ times. Middle: KS distances of dTe
on the left) and nuclear retention times of 15, 30, and 60 min. The white line

distributions to a Poisson distribution over all ‘‘on’’ and ‘‘off’’ times as a function

n the left.

blue) transcript abundance against mean transcript abundance. Shaded areas,

nce in the nucleus and cytoplasm (black dots) and as predicted with the agent-

lls (Halstead et al., 2015). Squares, transcriptional bursts; arrow, accumulation

of single cells �1 hr after induction. n = 4, data are mean ± SEM. at given t,



JUN (Figures 6C and S6B), indicating that the short retention

times observed for fast-responding genes also have a noise buff-

ering effect. Thus, for most genes, nuclear retention seems long

enough to reduce stochastic variation arising from bursts in tran-

scription, also for immediate early genes. Moreover, it may be

that timescales of transcript retention in the nucleus are adapted

to the rate of their induction.

To test experimentally whether nuclear retention increases the

predictability of cytoplasmic transcript abundance in single

mammalian cells, we adapted bDNA sm-FISH to detect tran-

scripts in the nucleus, and performed an EGF induction experi-

ment where we measured both nuclear and cytoplasmic

transcript abundance. As expected, the increase in cytoplasmic

transcript abundance of genes reacting to EGF followed with a

delay the increase in nuclear transcript abundance (Figures

S6B and S6C). Moreover, bursts of transcription were clearly

visible in the nucleus (Figure S6C). Importantly, we found that

the coefficient of variation (CV2) was higher in the nucleus than

in the cytoplasm, in particular in cases when transcripts were

less abundant. This drop in transcript variability in the cytoplasm

compared to the nucleuswas predicted by themodel (Figure 6E).

Moreover, we found that MLR models have higher prediction

strength on cytoplasmic transcript abundance than on nuclear

transcript abundance, (e.g., 2.5-fold higher for FOS and JUN),

which is consistent with the agent-based model (Figure 6F). In

addition, when we overexpressed NUP153, a nuclear pore

component that upon overexpression reduces mRNA nuclear

export (Bastos et al., 1996), we observed a reduction in cyto-

plasmic transcript variability for JUN, 20 min after induction

with EGF (Figure S6D).

Next, we used long-term time-lapse imaging of single HeLa

cells expressing an inducible transcript containing 24 bacterio-

phage MS2 stem loops, as well as Halo-tagged MS2 coat pro-

tein, which binds to the stem loops (Halstead et al., 2015).

Time-lapse imaging carried out for 5–13 hr after gene induction

showed repeated bursts of transcription in the nucleus (Fig-

ure 6G). We also observed a transient accumulation of tran-

scripts at the inner nuclear envelope, and a delay between

the increase in nuclear transcript abundance and cytoplasmic

transcript abundance, both indicative of nuclear retention (Fig-

ure 6G). From the movies, we estimated that the length of

bursts (‘‘on’’ times) were 10–60 min, the intervals between

bursts (‘‘off’’ times) were 20–100 min, and nuclear retention

time was �40 min. These values are within the range of the

modeled parameter space, and thus predict that cytoplasmic

transcript abundance should display less stochastic variability

than nuclear transcript abundance. To measure this within the

same single cells, we calculated the autocorrelation in tran-

script abundance over time in both the nucleus and the

cytoplasm. A low autocorrelation is indicative of stochastic

fluctuations. Consistent with the model’s predictions, we

observed that autocorrelation measurements of transcript

abundance over up to 1-hr time periods are higher in the cyto-

plasm than in the nucleus (Figures 6H and S6E). This directly

shows that during gene induction, transcript abundance shows

more stochastic fluctuations over time in the nucleus than in the

cytoplasm, indicative of buffering through nuclear compart-

mentalization and retention.
C

Taken together, this showed that cellular compartmentaliza-

tion separating the nucleus from the cytoplasm is an efficient

mechanism to dampen stochastic fluctuations arising from

bursts in gene transcription for most genes. This explains how

cytoplasmic transcript abundance in single cells can approach

a Poisson limit of minimal stochasticity despite the occurrence

of burst-like gene transcription.

DISCUSSION

In this study, we perform highly accurate measurements of tran-

script abundance in large numbers of single adherent humancells

with single-molecule resolution for a thousand genes using im-

age-based transcriptomics. We combine these measurements

with a multivariate set of features from the same single cells that

quantify multiple properties of the cellular state, their population

context, and their microenvironment. We show that multilinear

regression models based on these features can predict single-

cell distributions, have high prediction strength on single-cell

transcript abundance, and can accurately predict single-cell

expression patterns. The amount of variability not explained by

multilinear regression approaches a system of minimal stochas-

ticity given by a Poisson process. The causality underlying this

high predictability stems from mechanisms by which the cellular

state, the population context, and the microenvironment deter-

mine cytoplasmic transcript abundance in single cells, for which

we provide a systems-level map across several hundred genes.

Finally, we show that mammalian cells can achieve minimal sto-

chasticity in cytoplasmic transcript abundance by means of nu-

clear compartmentalization, which, through temporally retaining

transcripts in the nucleus, provides a general and potent mecha-

nism to buffer stochastic fluctuations caused by bursts in gene

transcription. An independent simultaneous study confirms that

also within tissues, mammalian cells display nuclear retention of

transcripts to buffer noise (Halpern et al., 2015).

Our findings pertain to virtually all of the genes analyzed in

adherent human cells, both when cells are at quasi steady state

in the continuous presence of serum, as well as during acute

gene induction experiments after a period of serum starvation.

This illustrates that even at time-scales of less than 1 hr, a differ-

ential response in the upregulation of cytoplasmic transcript

abundance in single adherent mammalian cells is largely of

non-stochastic origin. Only a few genes display simultaneously

a high degree of explainable variability as well as a high degree

of unexplainable variability. These are immediate early response

genes, the transcripts of which accumulate rapidly in the cyto-

plasm after induction of expression, are only shortly retained in

the nucleus and are subject to high cytoplasmic turnover. While

this limits the nucleus’ ability to completely filter out stochastic

variability caused by bursts in gene transcription for these genes,

their relatively brief nuclear retention still has a sufficient noise

dampening effect. Thus, while cell-to-cell variability in cyto-

plasmic transcript abundance in mammalian cells is often large,

our findings show that the cause of this variability is not stochas-

tic, but is determined by a multilevel system regulating transcript

homeostasis in single cells.

The use of nuclear retention for noise filtering underscores the

notion that mammalian cells do not rely on the induction of gene
ell 163, 1596–1610, December 17, 2015 ª2015 Elsevier Inc. 1607



transcription for very fast responses. For the fastest responding

genes in mammalian cells, such as FOS and JUN, nuclear reten-

tion times appear adjusted to the rate of induction, short enough

tominimize the delay in response, but long enough to enable effi-

cient noise buffering.

In prokaryotes, where a nucleus is absent and RNA pre-pro-

cessing is minimal, transcriptional responses can make use of

co-transcriptional translation and can thus be very fast (Bird,

1995; Martin and Koonin, 2006). Also in single-cell eukaryotes,

such as yeast, which show less extensive nuclear processing of

transcripts and have considerably smaller nuclei, transcriptional

responses may overall be somewhat faster than in mammalian

cells (Kresnowati et al., 2006). This suggests that as cells ac-

quired a nucleus during evolution and formedmulticellular organ-

isms, the increased complexity in nuclear RNA processing came

with the additional benefit of filtering out stochasticity in gene

transcription, at a slight expense of response time.

Several mechanisms of buffering noise in mammalian gene

expression have been proposed, mostly involving gene-specific

solutions, such as feedback or feedforward motifs in their tran-

scriptional regulation, or the co-expression of its own microRNA

(Arias and Hayward, 2006; Li et al., 2009; Milo et al., 2002;

Schmiedel et al., 2015). Cellular compartmentalization into the

nucleus and the cytoplasm however acts more globally. Thus,

regulation of nuclear retention may be a primary mechanism

for noise buffering of gene transcription in mammalian cells,

with additional mechanisms allowing further gene-specific adap-

tation. While a relatively slow rate of transcript degradation in

mammalian cells may also contribute to buffering stochastic

fluctuations, this also affects themean abundance of a transcript

and its ability to respond. Buffering through nuclear retention

does not or to a much lesser extent have these drawbacks.

The broad range of nuclear retention times for individual genes

in mammalian cells suggests the existence of mechanisms to

couple nuclear retention time to transcription dynamics, which

is more sophisticated than our simplified model. Indeed, tran-

script release from the nucleus, or transcript storage within

sub-compartments of the nucleus, is additionally regulated

(Bhatt et al., 2012; Culjkovic-Kraljacic et al., 2012; Prasanth

et al., 2005; Taddei et al., 2006), and such a couplingmay involve

association of active transcription sites to nuclear pores (Taddei

et al., 2006), and the direct participation of nuclear pore compo-

nents in the regulation of transcription machinery (Schneider

et al., 2015).

Finally, besides the generally accepted view that nuclear

compartmentalization of the genome during the course of evolu-

tion allowed more complex gene regulation and the rise of

multicellular organisms, we speculate that it provides another

important advantage: it allows a buffering of transcriptional

noise, resulting in a tighter control of gene expression variability

that is essential for successful multicellular development.
EXPERIMENTAL PROCEDURES

All details of all experimental and computational procedures are described in

the Supplemental Experimental Procedures. CellProfiler modules are available

at http://github.com/pelkmanslab. Single-cell distributions can be browsed at

http://image-based-transcriptomics.org.
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Cell Cultivation

HeLa cells were cultivated and seeded for experiments as described previ-

ously (Battich et al., 2013). Keratinocytes were cultivated in CnT-57 medium

(CELLnTEC) supplemented at 1:100 (v:v) with Pen Strep (GIBCO).

Image-Based Transcriptomics

Image-based transcriptomics, including sample processing and computa-

tional object detection, were performed as described previously (Battich

et al., 2013; Stoeger et al., 2015). Briefly, cells were seeded in 384-well plates,

and transcripts of distinct genes were stained in separate wells by branched

DNA single-molecule fluorescence in situ hybridization using ViewRNA re-

agents (Affymetrix) on an automated experimental platform and imaged using

a CellVoyager 7000 (Yokogawa) with an enhanced CSU-X1 spinning disk

(Microlens-enhanced dual Nipkow disk confocal scanner, wide view type)

and a 403 Olympus objective of 0.95 NA and Neo sCMOS cameras (Andor;

2,560 3 2,160 pixels).

Predictions of Spots per Cell

Multilinear regression (MLR) models of spots per cell were trained using the

robustfit function of MATLAB and applied to an independent biological

replicate. Stochastic simulations were carried out using the Gillespie

algorithm.

In Vivo Imaging of Transcripts

HeLa 11ht cells (Weidenfeld et al., 2009) stably expressing a doxycycline-

inducible Renilla luciferase transcript that contains a chimeric b-globin/immu-

noglobulin G intron in the 50 UTR, and 24 copies of the MS2 stem loops in the

30 UTR (HeLa 11ht MS2) were kindly provided by Jeffrey Chao (Friedrich

Miescher Institute). To visualize transcripts tagged with the MS2 stem loops,

HeLa 11ht MS2 cells were imaged in an inverted Nikon Eclipse Ti-E micro-

scope equipped with the Yokogawa Spinning Disc System W1 and a Nikon

CFI PlanApo 1003 oil-immersion objective.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, one table, one movie, and two data files and can be found with

this article online at http://dx.doi.org/10.1016/j.cell.2015.11.018.
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