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Lessons from genetics: interpreting complex phenotypes in
RNAi screens
Raphael Sacher1, Lilli Stergiou1 and Lucas Pelkmans
Mammalian cell biology is witnessing a new era in which cellular

processes are explained through dynamic networks of

interacting cellular components. In this fast-pacing field,

where image-based RNAi screening is taking a central role,

there is a strong need to improve ways to capture such

interactions in space and time. Cell biologists traditionally

depict these events by confining themselves to the level of a

single cell, or to many population-averaged cells. Similarly,

classical geneticists observe and interpret phenotypes in a

single organism to delineate signaling processes, but have

also described genetic phenomena in populations of

organisms. The analogy in the two approaches inspired us to

draw parallels with, and take lessons from concepts in classical

genetics.
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Introduction
Phenomena from genetics, such as quantitative traits,

heterogeneity, pleiotropy, penetrance, and expressivity,

are likely to be relevant for every cellular process, and will

be visible in a population of isogenic tissue culture cells.

For example, it is just as fundamental to implicate these

phenomena in clathrin-mediated endocytosis, as it is for

engulfment of apoptotic germ cell corpses in Caenorhab-
ditis elegans [1–3]. By quantitatively studying large popu-

lations of cells whose components and regulatory circuits

are known at the single cell level, we might better under-

stand the mechanisms that, when disrupted, give rise to

these genetic phenomena. This approach lies at the

interface of genetics, molecular cell biology, and evol-

ution, and will be a major focus of attention in the
www.sciencedirect.com
developing discipline of systems cell biology. In this

review, we will highlight some of the concepts of classical

genetics and discuss them in the context of current

challenges in image-based RNAi screening. We want

to increase awareness among cell biologists by demon-

strating these phenomena for clathrin-mediated endocy-

tosis of transferrin in human cells.

Endocytosis and RNAi
The process of endocytosis has a crucial role in the

maintenance of cell physiology and homeostasis [4,5].

Endocytosis regulates a broad spectrum of signaling pro-

cesses, ranging from cell migration and cell adhesion to

anchorage-dependent cell growth, cell proliferation, and

polarity of the cell [6–9]. The endocytic membrane

system in higher eukaryotes also provides spatio-temporal

control mechanisms of cellular signaling and, therefore,

the machinery of endocytosis is itself under tight regu-

lation. The complexity of this system has been difficult to

fully dissect, and many basic aspects remain to be dis-

covered.

Understanding this important aspect of cellular function

will provide a better knowledge of the spatio-temporal

coordination of signaling pathways. A powerful tool to

functionally dissect membrane trafficking routes is to

monitor successful infectious virus entry. Viruses have

co-evolved into specific directions to take advantage of

signaling cascades and either clathrin-mediated endocy-

tosis, caveolae/raft-mediated endocytosis, macropinocy-

tosis or non-clathrin, non-caveolae pathways to gain entry

into host cells [10,11,12,13�]. To study the more complex

morphological and dynamic features of endocytic

activity, fluorescent endocytic cargo and fluorescent

protein-tagged markers or immunofluorescent stainings

of endocytic pits, vesicles, and organelles are used

[14,15].

These two principal types of assays provide a useful

platform to explore the properties of the endocytic mem-

brane system. Combined with RNA interference (RNAi),

they allow us to systematically study the response of this

highly complex cellular system to a large number of

perturbations with single-gene specificity [16]. This

makes it possible to address questions that go beyond

the function of a single gene: we can simultaneously study

a group of functionally related genes and gene products

on the basis of similar loss-of-function phenotypes that

arise upon silencing. Furthermore, we can assign a poten-

tial endocytic role to genes with unknown functions on
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the basis of the similarity of their loss-of-function phe-

notype with previously identified endocytic phenotypes.

By applying automated imaging techniques, we can

extract and quantify phenotypic information with high

accuracy, which is needed to generate functional net-

works of the identified genes.

Image-based phenotypic profiling
Currently, others and we are generating an integrated

basis for high-throughput phenotypic siRNA (short-inter-

fering RNA) screens of cellular processes in large popu-

lations of human cells. Depending on the particular focus

of each study, either a candidate-based or a more global

siRNA approach is performed, using three or more indi-

vidual siRNA duplexes against each gene. After gene

silencing in the cell line of choice (in our case cells in

which the endocytic pathway under study is active), the

endocytic assay is conducted. Besides imaging the endo-

cytic membrane system as described above, additional
Figure 1

(a) A schematic model of the development of variable phenotypes in a cell po

to a cellular state is depicted. Arrows depict potential feedback mechanism

states are represented in a multidimensional space. (b–e) Development of a

perturbed (using siRNA) (c–e) populations of HeLa cells were incubated wit

(molecular probes) to visualize the cell as a whole and nuclei were stained wit

magnification and the channels were merged. Scale bars represent 50 mm.

different severities of a morphological phenotype and a pleiotropic effect of

severities and different penetrance (cell size (9/12), vacuoles (7/12), no transf

subpopulation is a sign of uncoupled pleiotropic effects. (e) Three clonal patc
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probes to visualize the various compartments of the

secretory pathway, the cytoskeleton and the cell mem-

brane, as well as the activity status of signaling pathways,

are often essential for correct interpretation of the RNAi

phenotype [17].

Applying such relatively complex assays to a high-

throughput setup, in which a quantitative statement

about each single cell is generated, needs sophisticated

computational infrastructure and image analysis algor-

ithms, and a high degree of method standardization.

Currently, the methodology of ‘high-throughput and

high-content imaging’ is at an early stage but rapidly

developing. These activities hold high promises for the

near future to increase speed, reliability, optical resol-

ution, and sensitivity in molecular systems cell biology

[18]. There are several open source [19,20�] and commer-

cially available image analysis software packages [21–23],

actively improved and expanded by a growing scientific
pulation. On the left hand, the interplay between different cues that lead

s. On the right hand, parameters that could act on the different cellular

phenotype following a perturbation. Unperturbed (b) and genetically

h fluorescent transferrin for 10 min. Cells were stained with CellTrace

h DAPI. All images were taken with a high-throughput microscope at 20�
(b) Unperturbed cells display a variety of phenotypes, (c) cells show

transferrin uptake, (d) cells show a pleiotropic effect with different

errin uptake (12/12)). Note that different penetrance of phenotypes in one

hes of cells display different phenotypes upon silencing of a single gene.

www.sciencedirect.com



Lessons from genetics: interpreting complex phenotypes in RNAi screens Sacher, Stergiou and Pelkmans 485
community. In the interest of science, we believe it is

important to support methods whose algorithms have

been subjected to peer review and are freely shared

among scientists.

Development of a phenotype in RNAi screens
Before embarking upon identification and computer-

aided classification of phenotypes from large imaged

datasets, we believe it is important for scientists to

consider the mechanisms by which gene loss-of-function

phenotypes develop in a population of human cells. A cell

population in human tissue culture is heterogeneous [21],

because cells in the same population exist in different

states [24]. Two obvious states are mitosis and apoptosis,

but by continuously integrating extrinsic and intrinsic

cues, a single cell in a population can have a variety of

different states of gene expression and pathway activity.

In Figure 1 we illustrate conceptually how this hetero-
Figure 2

(a) Formal description of the penetrance of a phenotype in a cell population

phenotype and its subpopulation penetrance can differ depending on the ce

divided by the total cells (xi,j + yi,j) defines the penetrance of the phenotype i

can be coupled or independent of each other.
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geneity arises in an unperturbed cell population. We also

give examples of how phenotypic heterogeneity (fluor-

escent transferrin uptake, cell size, presence of vacuoles)

develops as a result of gene perturbation (Figure 1b–d).

Extrinsic factors for this heterogeneity might be differ-

ences in cell–cell contacts, in cell extracellular matrix

(ECM) contacts, or gaps in a monolayer, leading to

specific gene expression programs [25]. Another source

of heterogeneity in a population of cells could arise from

genetic or epigenetic changes that are inherited during

cell division, leading to the formation of genetic mosaics.

Such clonal patches can differ morphologically, as well as

in their gene expression and signaling pathway activity, as

exemplified by clathrin-mediated uptake of transferrin

(Figure 1e).

Internal and external cues create a highly variable popu-

lation of cells, with the full range of possible cellular states
consisting of multiple cellular states. The severity or expressivity of a

llular state. The sum of the cells of one phenotype in a cellular state (yi,j)

n a population. (b) Pleiotropic effects can have different penetrance and
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(Figure 1a, b). It is important to realize that this is the

situation in an unperturbed population of cells. A genetic

perturbation in a population of individual cells will there-

fore create a different distribution of cellular states with

additional dimensions (Figure 1a). This observation raises

important questions as to how RNAi phenotypes arise in

human tissue culture cells, and we here discuss and

speculate on the factors that contribute to the develop-

ment of such phenotypes.

Phenotype penetrance and expressivity

In classical genetics, a gene loss-of-function phenotype is

penetrant when it is manifest in a proportion of individ-

uals within a genetically homogenous population [26]. We

here expand on that by posing that the different cellular

states in a population of isogenic cells form subpopu-

lations with different penetrance (Figure 2a). Depending

on the frequency of the particular cellular state in which

the phenotype is apparent, the phenotype might have a

very low penetrance. There are numerous examples from

classical genetics where a low penetrance of a particular

loss-of-function phenotype is still significant [27,28].

Moreover, in mutants that are genetically null (complete

lack of gene product), it can occur that the penetrance is

less than 100% [29–31].

A related phenomenon known from classical genetics is

the expressivity or severity of a phenotype, which is the

variability in the degree with which a phenotype becomes

apparent in an individual organism, and by analogy, an

individual cell. As with penetrance, expressivity can also

be modified by genetic and environmental influences.

Both parameters need to be taken into account when

either qualitative or quantitative statements are made. In

fact, expressivity can be used to define a phenotypic

threshold (Figure 2a).

Genetic redundancy

In several cases, silencing of a gene via RNAi leads to no

obvious phenotype, even though the gene is known to

have an important role (usually concluded from over-

expression of dominant, active or negative forms)

[32,33]. The lack of a phenotype by RNAi can be

explained by genetic or functional redundancy, where

the activity of a gene is lost, yet compensated by the

function of a different gene or a different pathway [34,35].

In model organisms, redundant genes are discovered by

conducting synthetic screens and studied by performing

double mutant analyses [36,37]. Genetic techniques in

human cell lines are limited, but similar studies could be

undertaken by combinatorial RNAi screens, or by com-

bining RNAi with dominant-negative mutants or small

molecule inhibitors [38,39].

Pleiotropic effects

Unlike genetic redundancy, gene loss-of-function can

also result in multiple phenotypes. What classical geneti-
Current Opinion in Cell Biology 2008, 20:483–489
cists refer to as pleiotropy [26] can also be observed in a

population of cultured cells, with different cells showing

different phenotypes, and/or the same cells sharing more

than one phenotype (Figure 1d, Figure 2b). While differ-

ent cells showing different phenotypes could be

explained by the perturbation acting on different cellular

states, different phenotypes within one cell could be the

result of the gene product participating in more than one

biological process, or has signaling functions on multiple

target molecules.

Indirect effects

Determining an RNAi phenotype will also be compli-

cated by a potential indirect, although ‘on-target’ effect of

gene silencing. A phenotype can be the result of affecting

a general, essential cellular process, or affecting a process

that ‘feeds’ into the one perturbed by the knockdown

(Figure 1a). An obvious example of the first case is that

genes regulating the translational capacity or the meta-

bolic status of a cell are expected to have widespread

influences on various biological activities. Examples of

the latter might be imagined as effects that act through

changing the distribution of cellular states. Even though

such phenotypes are interesting and important for the

understanding of a cellular process, they will not inform

us about the components of the core machinery of the

studied process.

Note on transfection efficiency and off-target effects

Attempting to infer siRNA transfection efficiency from

phenotype penetrance could be misleading. Although

transfection efficiency is typically high, some or

occasionally most cellular states might not show a

phenotype because the targeted gene is either not

involved, or not expressed. Multiple siRNAs against

the same gene can show different phenotypes, an

observation that is often interpreted as off-target

effects. An additional explanation could be that

depletion levels of the same gene can have different

penetrance. Such differences can well be imagined to

give rise to different, population-averaged mRNA pro-

files obtained from microarray experiments [40,41], and

might in the future even be harnessed to understand

phenotypic heterogeneity.

Taken together, if we want to reveal the full spectrum

of a gene’s function in a particular cellular process,

which includes the heterogeneity of that process in a

population, we must be able to account for and inte-

grate the phenomena described above. It is thus import-

ant to be careful with conclusions drawn from

observations made with small numbers of cells, or to

treat a cell population as a homogeneous unit. There-

fore, what has been originally described in classical

genetics, can be largely adopted by cell biologists using

genetics in mammalian cell populations with single-cell

resolution.
www.sciencedirect.com
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Classification methods
Classical genetics can, however, suffer from small sampling

size and non-quantitative, potentially biased classifications

of phenotypes. Computer-aided, image-based RNAi

screening with single-cell resolution overcomes these pro-

blems. It has therefore the potential to mechanistically

explain the phenomena from classical genetics, and to

reveal the underlying molecular and physical principles,

such as stochastic effects and regulatory circuits in cell fate

determination [42�,43,44�,45]. For most cellular systems,

however, such as clathrin-mediated endocytosis, these are

completely unexplored aspects of systems behavior. It will

be important that we change the methods by which we

identify, classify, and integrate gene loss-of-function phe-

notypes in large populations of cells. We therefore intro-

duce and discuss some of the principal concepts from

computer science and statistics that we expect to be

particularly important for this development.

Visual classification of phenotypes is a proven and powerful

method to find different phenotypes, especially when the

phenotype is complex, subtle, or of low penetrance [46–

48]. It is, however, clear that for formal and comprehensive

phenotypic descriptions we need unbiased and quantitat-

ive methods. These methods should not employ popu-

lation averaging, should be able to distinguish complex

phenotypes at least as good as a human expert, and should

be able to do that for many phenotypes in a short period of

time. Both supervised and unsupervised machine learning

will be essential techniques for computer-based classifi-

cation. The basis for both is an image analysis that allows

the segmentation and detection of cells, and the extraction

of many (>100) quantitative features (e.g. shape, intensity,

and texture features) from these cells.

Supervised classification using machine learning

Individual numerical features or parameters from one

identified object (e.g. a cell) can be combined in an n-

dimensional vector [49], generally called a feature vec-

tor. Supervised learning approaches use such feature

vectors to create functions defining the boundaries

between phenotypic classes from a training dataset.

The training data consist of cells with prototype phe-

notypes that are defined by an expert. The two most

commonly used computational methods to mathemat-

ically define phenotype boundaries are neural networks

or Support Vector Machines (SVM) [50]. A well-known

example is the use of machine learning to detect differ-

ent states of the mitotic cycle on the basis of

morphology, intensity, and texture features from

DAPI-stained nuclei [51�]. In addition, machine learn-

ing can be employed to detect particular cell shape

phenotypes, using features from fluorescent probes that

stain the cell membrane [52��].

Generally speaking, supervised machine learning can

transform non-comprehensive numerical values from
www.sciencedirect.com
cells into biological meaningful phenotypes. Once the

training of a prototype phenotype is complete, the sep-

arating function allows a subsequent unbiased phenotype

classification in a quantitative manner.

There is, however, a note of caution for feature selection:

Not all features are useful for classification, and some

features will disturb the classification outcome

[52��,53��]. Furthermore, we do not yet have sufficient

features to separate between more sophisticated pheno-

types, such as complex intracellular staining patterns.

Here, new image analysis algorithms need to be devel-

oped. Finally, supervised methods are believed to miss

unknown phenotypes. However, by doing multiple

rounds of computer-guided classification, one might in

the future be able to accurately classify most phenotypes.

Thus, the approach might allow not only the discovery of

new genes involved in known phenotypes, but also the

comprehensive analysis of all possible phenotypic states

of a cellular system.

Unsupervised methods

If features have been carefully selected, feature vectors

can be hierarchically clustered in an unsupervised manner

to generate phenoclusters [54�]. Phenoclustering has

been applied to group genes with similar function and

to map previously uncharacterized genes or chemical

compounds (drugs) to an already known group [53��].

Such clustering brings the advantage that it provides a

statistical value for the similarity of each phenotype with

every other phenotype [55]. By applying a threshold

below which the similarity is significant, the sets of

phenotypes will fall into phenotypic networks, which

represent the functional relations between the perturbed

genes. In addition, the phenotypic distances can be

compared or combined with protein–protein interaction

distances, synthetic lethal interaction distances, or gene

expression profiling distances to find significant func-

tional modules of molecular cellular components with a

similar loss-of-function phenotype [56].

Unsupervised methods have, however, a large drawback.

Usually, each feature in the feature vector has the same

weight in determining the distance between feature

vectors. If a small difference in the value of one particular

feature represents a clear boundary between two pheno-

types, this will not be detected. By contrast, supervised

approaches can select different features and can put

different weight on specific features every time a specific

phenotype class needs to be defined.

From classifying individual cells to cell populations

It would be a great loss of information if each carefully

analyzed and classified single cell would next be popu-

lation-averaged to obtain a single readout of a population

of cells. Since we have the possibility to assign each cell to
Current Opinion in Cell Biology 2008, 20:483–489
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more than one phenotype class, either by supervised

methods or with unsupervised phenoclustering, we can

define phenotype indices. These represent the fraction of

cells in the population with a certain phenotype or a

certain phenotype combination. Such indices are a fea-

ture vector themselves, where each feature constitutes a

phenotype index. These index vectors can be used in

supervised and unsupervised approaches to group genes

not only according to the actual loss-of-function pheno-

type they induce in a single cell, but according to the

variety of phenotypes they induce in a population of cells.

This information, both from individual cells and from cell

populations might be used to create comprehensive hier-

archical schemes of genetic interactions that regulate

cellular processes and coordinate them within a popu-

lation of cells.

Conclusions
Current accomplishments have advanced our understand-

ing of the cell on the molecular level, but at the same time

revealed more of its complexity. Phenotypes arising from

gene silencing are good witnesses for this complexity.

Quoting Sydney Brenner in his 1974 paper ‘‘How genes

might specify the complex structures found in higher

organisms is a major unsolved problem of biology’’, the

paradigm for today’s efforts should be to carefully collect

quantitative data from phenotypes and utilize them for

the generation of mathematical and physical models.

These models could, on the one hand, describe biological

processes of interest and, on the other, predict their

dynamic behavior over time, not only in a single cell,

but also in a population of cells.
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