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In addition to the HIS, we evaluated cosine and Pearson correla-
tions, which essentially find linear relations between variables. 
Correlations have been applied most successfully for identify-
ing gene interactions from yeast and bacterial gene knockout 
studies2–4, and because of this success they have been further 
applied in the analysis of parallel14 and combinatorial6,15,16 
RNAi screens in human cells. We also evaluated the maximal 
information coefficient17 (MIC), which captures a wider range 
of relations between variables. The performance of NEMs could 
not be systematically compared owing to technical limitations  
(Supplementary Results).

The HIS is robust with respect to parameter changes (Fig. 1b,c), 
missing data, large heterogeneous data sets and different data 
distributions (Supplementary Fig. 1; see also Supplementary 
Results and http://www.his2graph.net/). The resulting HIS net-
work and the direction of the interactions reflect the phenotypic 
hierarchies present in the data (Fig. 1d,e). This leads to hierarchi-
cally organized modular networks (Fig. 1f), features commonly 
observed in biological networks18,19. The top-scoring hierarchical 
interactions are inferred between genes with the highest number 
of strong and nested phenotypes (Supplementary Fig. 2) and, as a 
consequence, typically connect multiple subnetworks (Fig. 1g).

We benchmarked the HIS and other methods in the retrieval 
of known interactions from four sets of parallel RNAi screens: 
our endocytome data set, which contains 13 image-based RNAi 
screens on 1,132 genes in endocytic activities and organelles in 
human cells (unpublished data, P.L., B.S. and L.P.); our largely 
unpublished infectome data set, which contains seven RNAi 
screens on the human druggable genome in virus infection12,13; 
and the publicly available human and fly RNAi screening results 
collected in the GenomeRNAi database20. In the endocytome and 
infectome data sets, we applied a normalization of population 
context–determined effects21, thereby consistently improving 
both the data quality and the cross-comparability of the differ-
ent screens13. In contrast with benchmarks on synthetic data22, 
large-scale experimental data sets such as these do not have 
ground-truth interactions that should be inferred. We used three 
independent and publicly available descriptions of known gene 
interactions as the reference data sets: (i) genes sharing coannota-
tions retrieved from DAVID23 (v.6.2), (ii) genes with functional 
interactions retrieved from the search tool for the retrieval of 
interacting genes/proteins (STRING)24 (v.9) and (iii) proteins 
with physical interactions retrieved from Pathway Commons25 
(Online Methods). Surprisingly, we found relatively little overlap 
in the reported gene interactions from the three sources (Fig. 2a 
and Supplementary Fig. 3), a result emphasizing the importance 
of using all three reference data sets in our benchmarks.

Predicting functional 
gene interactions 
with the hierarchical 
interaction score
Berend Snijder1,3, Prisca Liberali1, Mathieu Frechin1, 
Thomas Stoeger1,2 & Lucas Pelkmans1

systems biology aims to unravel the vast network of functional 
interactions that govern biological systems. to date, the 
inference of gene interactions from large-scale ‘omics data 
is typically achieved using correlations. We present the 
hierarchical interaction score (his) and show that the his 
outperforms commonly used methods in the inference of 
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experiments, making it a valuable statistic for systems biology.

With the ever-increasing quantification of biological systems 
comes the need for powerful methods to analyze relationships 
between their measured variables. Statistical relations between 
genes measured from large-scale experiments can be used to pre-
dict functional or physical interactions, thereby suggesting gene 
function and regulatory pathways in healthy tissue1–6 and subse-
quently leading to new insights in disease7–9. Here we present the 
HIS, which falls within a category of methods that use subsets or 
nested effects in the analysis of large-scale data sets10,11; among 
these methods are nested effects models (NEMs)10. Unlike previ-
ous methods, the HIS identifies directed hierarchical relationships 
between pairwise variables on the basis of the combined evidence 
for the hierarchical relationship and the phenotype strengths, and 
it applies to large data sets of diverse origins. The HIS can be 
calculated and visualized online at http://www.his2graph.net/, 
where we further offer source code and all published resources 
for reproduction of the results presented here. Source code is also 
available as Supplementary Software.

We developed the HIS to infer pairwise interactions between 
genes studied in parallel RNAi screens12,13. For RNAi screens, 
the subset principle of the HIS can be explained by the following 
example (Fig. 1a). Gene ‘A’, which is a hit in a given set of screens, 
is placed upstream of gene ‘B’ in the phenotypic hierarchy if B is 
a hit with the same sign for an exact subset of those screens and 
if there is no gene ‘C’ with an intermediate subset of hits; this 
method thereby avoids indirect interactions (Online Methods). 
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To compare the performance of the different methods, we cal-
culated the precision (i.e., the true positive rate) and correspond-
ing P values (based on the hypergeometric distribution) for the 
top-predicted interactions at each position of the ranked list, 
starting from the highest scoring interaction (Fig. 2b and Online 
Methods). When we calculated the precision and significance of 
the top 100 hierarchical interactions from the fly GenomeRNAi 
data set and compared them against the functional interactions 
reported in STRING, we found a precision of 79%, meaning that 
79 of the top 100 predicted interactions were also reported in 
STRING. This is a 244-fold enrichment over background (P < 
10−175). To globally compare the performance of the HIS with 
that of the other methods, we calculated the average precision and 
significance values up to the top 300 predicted interactions from 
HIS and four other methods (cosine and Pearson correlations, 
MIC and random predictions) (Fig. 2c), an analysis strategy that 
rewards methods that assign higher scores to confirmed interac-
tions (Online Methods). For all four independent sets of parallel 
RNAi screens of human (Homo sapiens) and fly cell (Drosophila 
melanogaster) origin, the HIS strongly outperformed the other 
tested methods in the inference of known functional and physical 
interactions (Fig. 2c).

We next evaluated the performance of the HIS in retrieving 
known gene interactions from single- and double-gene–knockout  
screens performed in bacteria (Escherichia coli)4 and yeast 
(Saccharomyces cerevisiae)3,26 (Fig. 2c). The MIC could not be 
tested on these data sets, as the calculations repeatedly failed to  
finish (crashed). We found that, consistent with previous reports2–4,  
correlation-based methods retrieved known functional gene 
interactions and coannotated genes from parallel gene- 
knockout screens in bacteria and yeast in a significant manner 
(Fig. 2c), with roughly equal precision to the HIS for the single- 
gene–knockout data sets. No method inferred known physi-
cal interactions for the single-gene–knockout data sets on a  
significant level. On measurements of yeast growth for double-gene  

knockouts on a single medium3, the HIS retrieved known gene 
and protein interactions at very high significance (P < 10−100 for 
functional interactions). However, only on this data set did we 
find that the correlation-based methods outperformed the HIS 
for retrieval of known interactions (Fig. 2c). Interestingly, the top-
ranking interactions predicted by HIS were largely different from 
those predicted by the correlation-based methods, a result sug-
gesting that the HIS may be complementary to correlation-based 
methods in the inference of functional interactions from single- 
and double-gene–knockout experiments in yeast and bacteria. We 
examined the robustness of the different methods to incremental 
dilution of the true signal with Gaussian noise (Supplementary 
Fig. 4). The HIS was significantly more robust to noise than the 
correlation-based methods, even on those data for which the  
correlation-based methods initially outperformed the HIS.

As both NEMs10 and HIS infer interactions on the basis of 
subsets of phenotypes, we compared performance of both meth-
ods on the endocytome data set. Analysis of the other data sets 
with the NEM was not possible owing to its dependency on  
P value–transformed data, and the NEM-based transitive reduction 
could not be applied to any of the data sets because the network 
sizes were too big. The HIS significantly outperformed the NEM 
(Supplementary Fig. 5). A systematic analysis of the contribution 
of individual HIS features confirmed that subset effects alone do 
not prioritize known functional interactions between genes from 
parallel RNAi screens. This prioritization of known interactions 
requires the integration of phenotype width and strength and tran-
sitive reduction at multiple thresholds (Supplementary Fig. 6), 
which are unique features of the HIS.

We determined whether the high precision of the HIS on the 
D. melanogaster GenomeRNAi20 data set was dependent on any 
single RNAi screen by bootstrapping over randomly selected sets 
of 3–65 RNAi screens. When we calculated the bootstrapped 
maximum precision and maximum −log10-transformed P value 
as performance measures (Fig. 2d), we found that both measures 
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figure 1 | Design and properties of the HIS.  
(a) Global outline of the HIS algorithm.  
(b) The fraction of times an interaction is 
retrieved (at HIS > 0) is plotted against the 
average interaction rank (where rank 1 is the 
highest-scoring interaction) calculated over 
different parameter settings on the endocytome 
data. Red dots indicate statistics of randomized 
interactions. (c) Same as in b but showing the 
s.d. of the HIS ranks on the y axis. (d) Number 
of hierarchical interactions inferred at each 
threshold of the endocytome RNAi data set 
(black line). Gray bars are a histogram of the 
input data (corresponding axis not shown).  
(e) Number of different interactions per HIS 
category. Black, fully hierarchical; gray, equal; 
white, unequal hierarchy. (f) HIS represented as 
heat map for the 838 genes of the endocytome 
data set with interactions. Intensity represents 
the HIS, and colors are determined according to 
the contributing assays (as in fig. 1a). (g) Graph 
visualization of the HIS for values above 0.3 as 
inferred on the endocytome data set. Visualization 
is as on http://www.his2graph.net/. Selected 
interactions are shown with their corresponding 
13 RNAi phenotypes displayed as bar graphs.
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increased steeply for the HIS as the number of analyzed RNAi 
screens increased, a result independent of any individual RNAi 
screen. In comparison, both correlation methods showed a much 
lower maximum precision and −log10 P value, with hardly any 
increase in precision as more screens were analyzed. The same 
analysis on all possible sets of the endocytome screens reproduced 
this result (Supplementary Fig. 7). We consistently found that 
precision of the HIS results was higher for top-scoring hierarchical  
interactions, and this was also independent of any specific set of RNAi 
screens used (Supplementary Fig. 8). Consequently, we conclude  

that individual interactions subjected to follow-up  
studies should be inferred from as many independent experi-
mental data sets as possible and selected from the top-scoring 
HIS interactions to maximize the likelihood of the interactions 
being true. Furthermore, visualization of a top-scoring HIS net-
work can be based on a lower HIS threshold that maximizes the 
significance of the predicted set, as was done in Figure 1g and 
Supplementary Figure 9.

Upon analyzing the properties of incoming and outgoing  
hierarchical interactions, we found that the degree of outgoing 
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figure 2 | HIS performs best in the inference of functional interactions across species. (a) Venn diagram of the overlap of reference interactions of the 
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data, when benchmarked to functional interactions (STRING24 v.9 with scores above 400). Significance and precision are shown per rank (left) and per 
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hierarchical interactions, but not the degree of incoming 
 hierarchical interactions, positively correlated with the STRING 
degree of connectivity (Fig. 2e and Supplementary Results). As 
more essential genes have been shown to have a higher degree 
of connectivity in interaction networks3,5,27,28, this may suggest 
that genes placed upstream in the phenotypic hierarchy might 
have a higher degree of connectivity owing to their broader 
involvement in cellular activities. We additionally compared 
the hierarchical interactions with computationally predicted 
directionality of signal flow from membrane receptors to tran-
scription factors from protein-protein interactions29, and we 
found that agreement of inferred directionality depended on 
the type and sign of the interaction (Supplementary Fig. 10 
and Supplementary Results).

We also applied the HIS to the analysis of transcriptomics in  
S. cerevisiae22 (Supplementary Fig. 11) and immunohistochemical  
characterization of protein levels from human cancer sam-
ples30 (Supplementary Fig. 12). As on the other data sets, the 
HIS greatly outperformed the correlation-based methods in the 
inference of gene interactions. The resulting interactions learned 
from variations in protein expression levels of 20 different human 
cancer types may be relevant for understanding the mechanism 
of human cancer (Supplementary Fig. 13).

Finally, we compared predicted interactors of protein tyro-
sine kinase 2 (encoded by PTK2, or FAK) inferred from the 
endocytome data set with comparative phosphoproteomics 
(Supplementary Table 1) and transcriptomics analysis of PTK2 
knockout, wild-type and rescue cell lines (Supplementary Fig. 14  
and Online Methods). Both transcriptomics and proteomics iden-
tified similar processes typically associated with PTK2 function 
(Supplementary Fig. 14 and Supplementary Table 2). A com-
parative network analysis of the predicted interactors showed 
the strongest association of the HIS predicted interactors to the 
experimental results, and strengthened a HIS-predicted role for 
PTK2 in lysosome homeostasis (Supplementary Fig. 14 and 
Supplementary Results).

We present here a new statistic that accurately identifies rel-
evant biological interactions from various ‘omics data. The power 
of the HIS across all tested data sets3,4,12,13,20,22,26,30, and the low 
overlap with previously inferred interactions from these data 
sets, suggests that the set of hierarchical interactions is a largely 
unexplored resource for unraveling biological complexity. The 
improved performance of the HIS on parallel RNAi screens may 
be explained by the more complex organization of functional gene 
interactions in cells from multicellular organisms, by the reduced 
complexity of phenotypes measured solely from colony fitness 
data, and by the elimination of indirect hierarchical interactions, 
which recently was shown to also improve the predictive power 
of correlative analyses31. Whereas correlation-based methods 
appear useful for identifying interactions between components 
within one protein complex, cellular structure or cellular activ-
ity, the HIS explicitly identifies functional interactions between 
genes that function in multiple cellular activities, which likely 
represent the majority of regulatory interactions in higher organ-
isms. Driven by the advent of systematic characterizations of 
genome-wide gene-knockout libraries in mammalian cells32,33, 
the HIS will greatly aid systematic inference of functional 
interactions from large-scale gene-knockout experiments in  
higher organisms.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. NCBI Gene Expression Omnibus: the micro-
array data set is available at accession GSE43873.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Data and code availability. HIS-predicted interactions from 
the experimental data sets and source code can be found online 
at the accompanying website: http://www.his2graph.net/. This 
website additionally gives access to all published experimental 
data sets and their corresponding reference sets, as well as to 
the source code of the HIS method. Source code is also avail-
able as Supplementary Software. The microarray data set has 
been uploaded to the NCBI Gene Expression Omnibus as record 
GSE43873. The phosphoproteomics results are available in 
Supplementary Table 1.

Omics and reference data sets. All published experimental 
data sets analyzed in this study were downloaded from their 
respective online resources and normalized such that the most 
abundant phenotypes have values around 0. Reference data sets 
from DAVID23 version 6.2, STRING24 version 9 and Pathway 
Commons25 were downloaded from their respective online 
sources. DAVID annotation tables were downloaded for the full 
set of proteins or genes analyzed at default DAVID settings, and 
genes were scored as being coannotated when they share two or 
more annotations that contain maximally 90 genes or proteins 
within the analyzed data set. This limit was set to avoid ubiqui-
tous annotations (for example, “splice variant”) from leading to 
spurious interactions. STRING interactions were considered with 
a STRING interaction score above 400, unless stated otherwise. 
All ‘omics and corresponding reference data sets are available for 
download from http://www.his2graph.net/. Homology mapping 
between mouse and human genes for the PTK2 analysis was per-
formed using BioMart.

The hierarchical interaction score. The HIS works as outlined 
in Figure 1a and as described above: a data set (of size m × n) is 
discretized at a set of thresholds into 0s (nonphenotypes) and 1s 
(hits or phenotypes). At each threshold, all hierarchical relations 
are inferred between each pair of variables (rows) of the data set, 
where a hierarchical relation between two variables is defined by 
a variable having an exact subset of ones of the other variable. 
Such an interaction is directed from the variable with the most 
1s toward the variable with the subset of 1s. Transitive reduction 
is applied to remove ‘shortcuts’ or indirect links in the graph at 
each threshold, reducing the graph to its minimal representa-
tion. For each interaction and at each threshold, an intermediate 
score is kept that is the number of phenotypes that the two vari-
ables have in common. At each threshold, variables with identi-
cal phenotypes get assigned a bidirectional interaction, scored 
as well for the number of phenotypes that the variables have in 
common. Finally, the HIS is calculated as the mean number of 
phenotypes in common for each interaction in each direction 
over all thresholds. See http://www.his2graph.net/ for the source 
code of the calculation. The calculation has been optimized in its 
use of memory and for speed.

Benchmarking statistics. We calculated the precision and its 
corresponding P value at each rank of the sorted list of predicted 
interactions, where rank 1 represents the single highest-scoring 
interaction. We use the term ‘precision’ for a set of predicted set of 
interactions being the fraction of interactions that are also present 
in the reference data set. In the absence of a true ground truth, 

the more commonly used ‘true positive rate’ and accompanying 
statistics (ROC curves, and their area-under-curve statistic) are 
not applicable (see also Supplementary Fig. 15). Corresponding 
P values are calculated as the probability of getting x positive 
interactions out of a total predicted set of interactions of size y,  
where there are a total possible k interactions, for which the ref-
erence has m positive interactions. Given these parameters, the 
probability is given by the hypergeometric probability function. 
Interactions with the same score (common, for instance, for cor-
relations based on few data points and for the MIC) are all given 
the probability and precision for the set of predicted interac-
tions that includes all interactions with this same score. P values 
are calculated for undirected interactions, and self-connections 
are excluded from the analysis. This means that for a data set of  
m rows (or variables), the total number of possible interactions 
equals m × (m − 1)/2. See http://www.his2graph.net/ for a fast 
implementation of the precision and P-value calculation.

For comparison of the different inference methods, we com-
pared their average statistics of the highest 300 to the highest 1 
scoring interaction(s), which is calculated as the average of the 
precision and significance statistics of the top 300, top 299, top 
298, …, to the top 1 predicted interaction(s). This average top 
300 statistics favors results in which confirmed interactions are 
more abundant and ranked closer to 1. As discussed in the main 
text, these are both desirable properties for methods that infer 
interactions that require further experimental validation. The 
conclusions drawn from the global validation results shown in 
Figure 2c do not change when the top 1,000 predicted interac-
tions are used.

Human Protein Atlas data normalization. Human Protein Atlas 
cancer data were downloaded from http://www.proteinatlas.
org/. For each protein, the manually annotated labels “negative,” 
“weak,” “moderate” and “strong” were converted to the numeri-
cal values ranging from 1 to 4, respectively, and averaged over all 
samples (from different patients) per protein and cancer type. 
These values were next z-score normalized (subtract the mean of 
the set and divide by its s.d.) for each cancer type (column) first, 
and subsequently for each protein (row), to emphasize difference 
in protein levels among cancers.

Cell lines. Wild-type mouse embryonic fibroblasts (MEFs) (PTK2-
WT) were obtained from ATCC, CRL-2645. MEFs knocked out 
for focal adhesion kinase gene (PTK2−/−) were obtained from 
ATCC, CRL-2644. MEFs rescued by overexpression of the focal 
adhesion kinase gene in a PTK2−/− background (PTK2-RESC) 
were obtained from D. Schlaepfer34, clone DA2.

Microarray. For dense condition 8.2 × 106 cells were seeded, 
whereas for sparse condition 0.41 × 106 cells were seeded. Cells 
were the grown for 24 h, harvested by trypsinization and frozen at 
−80 °C. RNA preparation was done with the Qiagen RNeasy Mini 
Kit. The quality of the isolated RNA was determined (NanoDrop 
ND 1000 and Bioanalyzer 2100) and only the samples with a 
260 nm/280 nm ratio between 1.8 and 2.1 and an RNA integrity 
number higher than 8 were further processed. Total RNA samples 
were reverse transcribed into double-stranded cDNA in presence 
of RNA poly(A) controls from the RNA Spike-In Kit (Agilent). 
The double-stranded cDNA were in vitro transcribed in the  
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presence of Cy3-labeled nucleotides using a Low Input Quick 
Amp Labeling Kit. The Cy3-cDNA was purified using a RNeasy 
Mini Kit, and only cDNA samples with a total cDNA yield higher 
than 2 µg and a dye incorporation rate between 8 pmol µg−1 and 
20 pmol µg−1 were considered for hybridization. Cy3-labeled 
cRNA samples were randomly fragmented to 100–200 bp at 
65 °C, and target cRNA samples were hybridized to Whole Mouse 
Genome 4x44k OligoMicroarrays for 17 h at 65 °C. Raw data 
processing was performed using the Agilent Scan Control and 
the Agilent Feature Extraction Software Version 10. Quality-
control measures were considered before statistical analysis was 
performed. These included inspection of the array hybridization 
pattern, proper grid alignment, performance of the spike-in con-
trols (linear dynamic range between five orders of magnitude) 
and number of green feature nonuniformity outliers (below 100 
required for all samples).

Phosphoproteomics analysis. PTK2-WT, PTK2-KO and PTK2-
RESC were grown in DMEM (+10% FCS), reaching a final 
concentration of approximately 5 × 105 cells per ml after 48 h, 
corresponding to a nonconfluent state. Cells were washed with 
1× PBS and disrupted in lysis buffer (150 mM NaCl, 50 mM 
Tris-HCl, pH 7.2, 10 mM EDTA, 1 mM Na3VO3, 200 mM oka-
daic acid, 2 mM calyculin A, 1 mM PMSF, 0.1% Rapigest). The 
purification and enrichments of phosphorylated peptides were 
performed with TiO2, and mass spectrometry was performed in 
triplicate. Both purification and measurement were performed as 

previously described35. Significance was calculated by comparing 
the triplicates with a two-tailed t-test.

Western blot analysis. PTK2-WT, PTK2-KO and PTK2-RESC 
were grown, reaching a final concentration of approximately 5 × 
105 cells per ml after 48 h, corresponding to a nonconfluent state. 
Cells were washed with 1× PBS and disrupted in lysis buffer (0.5% 
sodium deoxycholate, 150 mM NaCl, 50 mM Tris-HCl, pH 7.2, 
0.1% SDS, 1% Triton X-100, 0.2% NaN3), and 15 µg of each pro-
tein extract was separated using 10% PAGE. Separated proteins 
were then transferred onto a membrane (Immobilon-P, 0.45 µm, 
Millipore) using the humid chamber method. Membranes were 
saturated with 5% milk proteins in 1× TBS-T (1× TBS, 0.1% 
Tween) for 1 hour. Mouse anti-Lamp1 (#555798, BD Biosciences) 
and rabbit anti-tubulin (Ab6046, Abcam) primary antibodies 
as well as HRP-conjugated secondary anti-mouse (#170-6516, 
BioRad) and anti-rabbit (#170-6515, BioRad) antibodies were 
diluted at respectively 1:1,000, 1:2,000, 1:5,000 and 1:5,000 in the 
same buffer. Primary and secondary antibodies were applied for 
90 min and 60 min, respectively. Signal was revealed with HRP 
substrate solution, imaged with a CCD camera and quantified 
with ImageJ. Owing to heavy glycosylation of Lamp1, our mouse 
anti-Lamp1 signal was over 90 kDa (predicted MW: 44 kDa), 
consistent with the product specifications for this antibody.

34. Sieg, D.J. et al. EMBO J. 17, 5933–5947 (1998).
35. Bodenmiller, B., Mueller, L.N., Mueller, M., Domon, B. & Aebersold, R.  

Nat. Methods 4, 231–237 (2007).
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