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Single-cell transcriptomics has recently emerged as one of the most promising tools for understanding
the diversity of the transcriptome among single cells. Image-based transcriptomics is unique compared
to other methods as it does not require conversion of RNA to cDNA prior to signal amplification and tran-
script quantification. Thus, its efficiency in transcript detection is unmatched by other methods. In addi-
tion, image-based transcriptomics allows the study of the spatial organization of the transcriptome in
single cells at single-molecule, and, when combined with superresolution microscopy, nanometer reso-
lution. However, in order to unlock the full power of image-based transcriptomics, robust computer
vision of single molecules and cells is required. Here, we shortly discuss the setup of the experimental
pipeline for image-based transcriptomics, and then describe in detail the algorithms that we developed
to extract, at high-throughput, robust multivariate feature sets of transcript molecule abundance, local-
ization and patterning in tens of thousands of single cells across the transcriptome. These computer
vision algorithms and pipelines can be downloaded from: https://github.com/pelkmanslab/
ImageBasedTranscriptomics.

� 2015 Published by Elsevier Inc.
1. Image-based transcriptomics is unique in several ways

In the past few years a wealth of techniques have been devel-
oped to study genome-wide transcriptional output at the
single-cell level [1–7]. In contrast to methods relying on sequenc-
ing or PCR, image-based transcriptomics visualizes single tran-
scripts in a population of single cells in situ. This allows not only
the absolute quantification of transcript copy numbers, but also
the spatial mapping of transcript molecules to the sub-cellular
microenvironment [4]. Being an in situ technology, it does not
require homogenization of cells and therefore minimizes the loss
of material, thus achieving very high detection efficiency [4].
Another advantage of image-based transcriptomics is that it can
be combined with the phenotypic characterisation of each single
cell and its context within a population of cells or tissue, by micro-
scopic assays and stainings commonly used in cell and develop-
mental biology. This makes image-based transcriptomics of
particular interest when studying the localization dynamics of
the transcriptome in response to stimuli or perturbations and to
identify sources of cell-to-cell variability in these processes [8,9].
While establishing image-based transcriptomics, we soon realized
that a robust computer vision pipeline was as important as the
experimental platform for accurately identifying and characteriz-
ing each single transcript molecule within a cell. Therefore, we
here describe in detail our recent computer vision algorithms
that result in accurate detection of objects in spinning disk confo-
cal microscopy images. Besides providing a robust guide for
identifying billions of individual transcript molecules with little
hands-on user time, we describe how to unlock functionally
important parameters of gene expression, which are impossible
to grasp without the power of computer vision. For instance, mul-
tivariate descriptors of the position of each single transcript mole-
cule enable an unsupervised characterization of the localization of
transcripts of every cell.
1.1. General outline

Image-based transcriptomics employs multi-well plates to stain
cells in parallel with specific probes against a transcript of interest
(Fig. 1). Within single wells of a multi-well plate, the transcripts
of different genes are stained by an automated experimental
procedure. Each single transcript molecule is detected by high-
throughput microscopy and computer vision. Experimental and
computational steps can be performed with equipment that is
commonly used for image-based high-throughput assays.
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Fig. 1. Outline of image-based transcriptomics using bDNA sm-FISH.
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Each single transcript molecule is stained by branched DNA
single-molecule in situ hybridization (bDNA sm-FISH). This tech-
nology, which is commercially available from Affymetrix and
Advanced Cell Diagnostics, applies a series of consecutive in situ
hybridizations, which visualize each single transcript molecule as
a bright fluorescent spot. In a first round of in situ hybridization,
two epitope-specific primary probes bind next to each other on
the same transcript molecule. While it is technically possible to
implement bDNA FISH with only one epitope-specific probe [10],
requiring the simultaneous binding of two probes in direct spatial
adjacency should reduce unspecific signal [11]. Targeting 15 differ-
ent epitopes of each transcript in a single hybridization reaction
ensures that at least one epitope is accessible to the detection
reagents without the need to denature the specimen. The subse-
quent rounds of in situ hybridization create a docking platform
for �500 fluorescently labelled probes per single epitope. This level
of fluorescence is sufficiently high to enable the specific, rapid and
robust detection of single transcript molecules by high-throughput
imaging.

1.2. Alternative methods for RNA detection in imaging

Another method for directly visualizing single transcript mole-
cules in situ is oligonucleotide-based single molecule FISH (o-nuc
sm-FISH). This approach targets individual transcripts by up to
40 different oligonucleotides, which are directly conjugated to flu-
orophores. While a recent study achieved to monitor 61 different
ncRNAs, it had to restrict itself to ‘‘a few dozen cells . . . due to lim-
ited imaging throughput’’ [12]. Possibly, this reflects the lower
signal-to-noise ratio of single fluorescent spots of o-nuc sm-FISH
and their need for a 600 times longer illumination time [4].

Alternatively, transcripts can be visualized indirectly via reverse
transcription to cDNA that can be sequenced in situ by padlock
probes [13] or oligonucleotide ligation and detection [14,15].
While the former sequencing approach can presently detect 31 dif-
ferent genes simultaneously in thousands of single cells within a
tissue slide [13], the latter approach can currently read around
200 mRNAs simultaneously for 40 different cells [15]. The effi-
ciency for detecting single transcript molecules has been estimated
to be 30% [13,16] and 3% [15] respectively, which is much lower
than the 85% of hybridization efficiency in sm-FISH [4,17]. Such
low efficiencies currently prevent these alternative methods from
surveying the transcriptome with single-molecule sensitivity and
resolution in situ [18,19].
2. Establishing image-based transcriptomics with single
molecule resolution

The detailed experimental protocol for high-throughput bDNA
sm-FISH has been published previously [4] and therefore, we here
mainly provide additional assistance for setting up a robust
automated experimental platform. As a general introduction to
high-throughput image-based assays and the infrastructure and
software supporting such experiments we highly recommend the
excellent essay by Buchser and colleagues [20].

Table 1 contains an overview of potential problems occurring
during the detection of single transcripts. The most critical factor
in getting reliable results is to use an automated incubator that
contains rotating towers for the individual storing of multi-well
plates during hybridization reactions. This prevents the occurrence
of different hybridization efficiencies in different wells of a
multi-well plate (data not shown). Table 2 highlights potential pit-
falls, which could affect the biological interpretation of accurate
single-molecule measurements. We recommend repeating the
control experiments suggested in Table 1 and Table 2 in different
weeks to ensure that your setup of image-based transcriptomics
functions robustly.
3. Establishing the image analysis pipeline

A robust image analysis pipeline is required for accurate mea-
surements of absolute transcript levels as well as measurements
of transcript localization in the cytoplasm of single cells, and
extraction of features that describe the cellular phenotype. First,
homogeneous intensity values throughout the images in all chan-
nels must be ensured, and then object segmentation must be per-
formed minimizing errors. To ensure this, we developed four
algorithms to perform high-throughput illumination correction of
raw images, robust nuclei and cell segmentation, and robust spot
detection. They can be downloaded from https://github.com/pelk-
manslab/ImageBasedTranscriptomics and applied on an example
dataset available on https://image-based-transcriptomics.org. The
algorithms presented in this manuscript do not intend to replace
single-cell quality control. For the latter we recommend interactive
user-guided supervised machine learning, which has been imple-
mented before by our group [23] and others [24]. Supervised
machine learning not only readily identifies rare cells that have
not been correctly segmented, but also allows the selection of a
group of cellular objects that is relevant for a specific biological
question (e.g., interphase cells).

The algorithms presented in this manuscript intend to reduce
human hands on time and increase the amount of high-quality pri-
mary data after computational image-analysis (Table 3).
Computational running time has not emerged as a practical issue
for image-based transcriptomics. The algorithms are robust in
the sense that their input parameters rarely have to be adjusted
for individual experimental plates.

While the principles of the algorithms presented in this manu-
script have been sketched in one of our earlier publications, the
description beneath provide a detailed guide for using those algo-
rithms. Moreover we here include implementations of these

https://github.com/pelkmanslab/ImageBasedTranscriptomics
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https://image-based-transcriptomics.org


Table 1
Suggested controls for the detection of transcript molecules.

Possible artefact Experiment Hints

Inability to detect single molecules Assay with probes against a single epitope of HPRT1 [4] Exposure time during imaging; protease
concentration

False positive detection Probe against bacterial gene dapB. Less than 1 spot per cell
should be detected

Protease concentration; cells without cytoplasmic
DNA

Spill-overs Stain adjacent wells for the negative control (bacterial dapB)
and the highly abundant ACTB transcripts. Test full plates

Liquid handling

Efficiency of single molecule detection Stain same transcript on two different sets of epitopes by two
different sets of amplification reagents, which can be
visualized by two different fluorophores. Efficiency of
detection should be �85% [4]

Protease concentration; amount of targeted
epitopes per transcript; computational spot
detection

Positional bias between wells (staining reaction) Stain all wells of a multi-well plate with probes against the
non-abundant housekeeping gene HPRT1

Always use incubator with rotating towers for
hybridization; never skip protocolled in-solution
mixing

Low reproducibility Multiple independent assays across different weeks Aberration of liquid handling < 1%; cell seeding
Tearing of signal of single molecules Compare signal obtained by multiple units and types of

objectives
Choose best objective and remove remaining effect
computationally (see below)
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algorithms for MATLAB and implementations as modules for
CellProfiler to segment single nuclei and cells.
3.1. Illumination correction

Illumination correction of raw images is essential for subse-
quent steps in the image analysis pipeline. It ensures correct object
detection and accurate measurements of intensity features, reduc-
ing biases due to uneven illumination of the sample as well as posi-
tional differences in the signal gain resulting from the detection
system. During image-based transcriptomics, we exploit the statis-
tical power of the large number of images acquired per channel to
learn pixel-wise illumination and signal gain biases (Battich et al.
[4], Fig 2). Briefly, we calculate the standard deviation and mean
intensity values per pixel for every pixel position of a given chan-
nel. To correct the illumination bias, per-pixel z-scoring is per-
formed as shown in Fig. 2(Eq. (1)). The z-scored values are then
reversed to intensity values as shown in Fig. 2(Eq. (2)).
Table 3
Time for image-based transcriptomics on ten 384-well plates to obtain results, whose
3.2. Nucleus segmentation

Pixels belonging to nuclei objects can be easily distinguished
from background pixels by thresholding an image of a
nuclei-specific stain such as DAPI. However, this often results in
Table 2
Suggested controls for the proper interpretation of single molecule measurements.

Possible artefact Experiment Hints

Positional bias
between
wells
(biological)

Compare the number of
cells and local cell density
[21] across individual wells

Avoid ‘‘edge-effects’’ by
following the cell seeding
protocol of Lundholt et al.
[22]

Variable number
of cells per
seed

Monitor and potentially
adjust cell dissociation
protocol such that, on
average, a cell aggregation
score of less than 1.2 is
achieved for each seed

Trypsinization time;
repeatedly shear cells
through pipette pressed
towards plastic dish

Loss of cells
during assay

Perform live-imaging of
cells with Hoechst dye
prior to the assay and
compare with presence of
cells after image-based
transcriptomics

Slowly pipet to side of well
(most steps) or center of
well (only for in-solution
mixing)

Staining of cell-
outline varies
between
experiments

Repeat and time
succinimidyl ester staining
with multiple freshly
prepared staining solutions

Time-dependent decay of
carboxylic acid,
succinimidyl ester, in
aqueous solutions
clumps of several nuclei because a single, image-wide threshold
value is generally not sufficient to separate nuclei that lie very
close to each other. Such clumped objects are relatively large and
display multiple concave regions. Generally, at the intersection of
individual objects, a line of low intensity pixels connects two con-
cave regions, which can be found by the watershed algorithm [25].
Thus, we identify single nuclei with an algorithm consisting of two
parts: first, intensity thresholding by the Otsu method [26] identi-
fies primary objects; and, secondly, objects consisting of multiple
nuclei are separated along the best identified watershed line
(Fig. 3).

The algorithm (algorithm 1) uses illumination-corrected images
and processes them as follows:

1) Initial objects are identified by simple thresholding.
2) Clumped objects are selected on the basis of size and shape

features: area, solidity, and form factor.
3) The perimeter of selected objects is analysed and concave

regions along the boundary of objects are identified.
4) Putative watershed lines connecting two concave regions

are determined using the Dijkstra shortest-path algorithm
[27].
quality appeared acceptable to us. Time estimates are based on our experience and
depend upon the specific computational infrastructure.

Hands-on
time

Computational
time

Computers
used by us

Illumination correction (this
manuscript)

5 min 2–5 h 4

Nucleus segmentation
(CellProfiler)

30 min <<1 h 1500

Nucleus segmentation (this
manuscript)

30 min <<1 h 1500

Cell segmentation
(CellProfiler)

5–10 h <<1 h 1500

Cell segmentation (this
manuscript)

5 min 2–10 h 1500

Cell segmentation (manual
segmentation)

>> 1 month
(expected)

Inference of spot detection
parameters (this
manuscript)

1–2 h 2–8 h 10

Optional lens aberration
correction

1 h 1–2 h 1500

Spot detection (this
manuscript)

30 min <<1 h 1500

Measuring localization of
transcripts

5 min 1–2 h 1500
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5) All possible cuts along the selected watershed lines are con-
sidered and features of each potential cutting line (intensity
along the line, angle between concave regions) as well as
features of the resulting objects (area/shape) are measured.

6) An ‘‘optimal’’ cut line is finally chosen by minimizing a cost
function that evaluates the measured features. The resulting
objects have a minimal size and are as round as possible,
while the separating line is as straight and as short as possi-
ble and the intensity along the line as low as possible.
Algorithm 1 IdentifyPrimaryIterative
1.
 Initialize() // initialize objects by thresholding the input
intensity image;
2.
 InitialSegmentation() // recognize objects as segmented
objects without cutting them first;
3.
 Repeat

4.
 For each object in segmented objects

5.
 If lower size threshold < size of object < upper size

threshold

6.
 and solidity of object < solidity threshold

7.
 and transformed form factor of object > form factor

threshold

8.
 then

9
 Add object to the collection of clumped objects to be

cut;

10.
 end

11.
 End

12.
 PerimeterAnalysis() // analyze perimeter of selected

clumped objects and calculate the curvature along their
boundary [see PerimeterAnalysis.m];
13.
 PerimeterWatershedSegmentation() // cut selected
clumped objects along watershed lines between concave
regions [see PerimeterWatershedSegmentation.m];
14.
 For each object in clumped objects

15.
 IdentifyConcaveRegions() of the object, where region

is concave

16.
 If angle of circle segment of region > equivalent

segment threshold

17.
 and radius of region < equivalent radius threshold

18.
 IdentifyLinesAndNodes() of the object // find all

watershed lines and nodes, where each node is a single
pixel on the line that overlaps with the object boundary;
19.
 Select watershed nodes If node lies within concave
regions;
20.
 Select all watershed lines If line connects two
watershed nodes from different concave regions;
21.
 For each line in watershed lines

22.
 Measure line length and straightness and the

intensity profile along the line;

23.
 Measure the angle between normal vectors at

watershed nodes;

24.
 Measure area, solidity and form factor of the cut

object, i.e. the smaller of the two objects that would
result from a cut along the line.
25.
 If size of the object < threshold of object being too
small
26.
 then
discard such cutting line from selected watershed

lines;

27.
 end

28.
 Select ‘‘optimal’’ watershed line by minimizing

the cost function
Algorithm (continued)

Algorithm 1 IdentifyPrimaryIterative
29.
 cost (a, b, c, d, e, f, g, h) a�2 ⁄ b � c � d � e + 2
⁄ f � g – 2 ⁄ h,
30.
 where
a is a solidity of cut object,
b is a form factor of cut object,
c is a mean intensity along the line,
d is a max intensity along the line,
e is a 0.75 quantile intensity along the line,
f is an angle between two watershed nodes,
g is a line straightness,
h is a line length.
31.
 End // of for-each-loop at line 21

32.
 End // of for-each-loop at line 14

33.
 Until no more clumped objects can be found.
Whenever attempting to identify individual nuclei of a novel cell
line or whenever changing imaging conditions, we recommend to
empirically test different schemes and parameters for segmentation
of nuclei. Good settings can usually be found empirically by using
the inbuilt testing mode of IdentifyPrimaryIterative. Contrasting
CellProfiler’s default options for separating objects, which are part
of the IdentifyPrimaryAutomatic module, IdentifyPrimaryIterative
can simultaneously consider the local intensity of the DAPI stain
and the geometry of identified objects to separate them. In practice
we never had to adjust the threshold value suggested by the Otsu
method [26]. Depending on the biological question of interest,
one might choose settings for the separation of objects, which
favour over- or under-segmentation. For instance
over-segmentation increases the fraction of emerging cells during
anaphase cells that are already considered as individual objects.
Under-segmentation on the other hand facilitates the correct seg-
mentation and thus quantification of multinucleate cells.

Frequently not every object, which can be identified in
image-based assays, should be considered in subsequent analysis.
For instance we preclude the analysis of DAPI positive cellular deb-
ris, apoptotic bodies and mitotic cells by a dual strategy, which is
independent of IdentifyPrimaryIterative. First the
DiscardObjectsBySize.m module removes small objects within
CellProfiler. Second, supervised machine learning identifies debris,
and apoptotic and mitotic cells [23].

3.3. Cell segmentation

The segmentation of cells uses the segmentation of nuclei as
seeds [28]. It is imperative to ensure correct segmentation of the
cellular cytoplasm as this will not only have a major impact in
the number of spots (or transcript molecules) allocated to each cell,
but will also drastically affect measurements of transcript localiza-
tion. To achieve the high accuracy in cell segmentation required for
image-based transcriptomics, we developed an algorithm that per-
forms sequential rounds of watershedding, rather than the one
round of watershedding typically applied [28]. This iterative algo-
rithm allows accurate identification of the boundary between cells
with relatively minimal user input.

In the algorithm, an arbitrary amount of different segmenta-
tions are combined in such a way that the allocation of single pix-
els to their correct seeds (nuclei) never becomes worse and thus
becomes optimal by iteratively performing many different seg-
mentations (Fig. 4). Besides largely eliminating human hands-on
time, this strategy generally yields superior results compared to
a single segmentation: different parts of a single cell can be seg-
mented by opposing segmentation settings, which only yield
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optimal segmentation accuracy in a subpart of the cell, but perform
sub-optimally in other subparts.

Briefly, the algorithm (Algorithm 2) treats the input images as
follows:

1) Calculate the watershed cell segmentation at different
thresholds.

2) One label image is constructed. If a pixel is part of different
objects at a given threshold (which is likely in cell-rich
regions), it will be allocated to the object of the higher
threshold (e.g. if threshold specifications were 1 and 0.5, it
would be attributed to the object identified with a threshold
of 1).

3) Define background pixels by a single user-provided
microscope-specific threshold, which can be determined
manually once.

4) Re-label pixels of prospective objects (cells), which are not
connected to their original seed (nucleus), as pixels belong-
ing to the background.
Algorithm 2 IdentifySecondaryIterative
1.
 1. Initialize empty FinalSegmentation matrix;

2.
 Load OrigInputImage

matrix;DefineThresholds(OrigInputImage) // defines a
Algorithm (continued)

Algorithm 2 IdentifySecondaryIterative
sorted list of thresholds {Ti}, where Tmin is a
minimalthreshold [e.g. chosen by CPthreshold.m] and
Ti < Ti+1.
3.
 SeedMarkersImage DefineSeedObjects(OrigInputImage)
// labels each pixel with grayscale values,uniquely
enumerating each seed object(e.g. nuclei) by its ID
(usually, a foreground mask from previous
segmentation);
4.
 For each threshold Ti in thresholds {Ti}

5.
 Obtain binary ThresholdedImage of pixels, where each

pixel = 1
If pixel intensity > Ti and pixel not in foreground
else pixel = 0;
6.
 Find labeled segmentation
Si WatershedMethod(ThresholdedImage,
SobelGradient(OrigInputImage), SeedMarkersImage); //
[see IdentifySecondary.m for ‘Watershed’ choice of
method];
7.
 Select indexes of all non-background pixels in
segmentation Si;
8.
 FinalSegmentation(indexes) Si (indexes); // overwrite
selected pixels within FinalSegmentation with the label
values in Si;
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Algorithm (continued)

Algorithm 2 IdentifySecondaryIterative
9.
 End

10.
 CleanSegmentation(FinalSegmentation) // Make sure

FinalSegmentation complies to CellProfiler expectations.
Function CleanSegmentation(FinalSegmentation):

1.
 Identify borders between different object labels as the

non-zero values upon Sobel-filtering, i.e.
Algorithm (continued)

Algorithm 2 IdentifySecondaryIterative
SobelGradient(FinalSegmentation);

2.
 Set the identified borders between different label values

of objects to background;

3.
 Set pixels with the object labels to background value, if

other pixels with the same object labels do not connect
them to the seed with the same label values of objects.



A

B

Fig. 4. Improvement of segmentation of cells by iterative correction. Several different and partially overlapping segmentations are combined to a single optimal segmentation
(Panel A). Detection of single cells stained by carboxylic acid, succinimidyl ester (Panel B).
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In our experience IdentifySecondaryIterative has never been per-
forming worse than segmentation by a single round of wathershed-
ding. The few remaining miss-segmented cells can be identified by
supervised machine learning. As with any image-based assay the
ability to resolve fine structures of the cellular periphery depends
upon their size and the resolution of the microscopic images. Like
other algorithms that segment 2D images to segment cells,
IdentifySecondaryIterative works best on cells that do not grow
on top of each other, such as HeLa Kyoto cells, RPEI cells and pri-
mary keratinocytes. If cells can grow on top of each other, it is
not always possible to allocate a single pixel to a single cell
(e.g.: A431, NIH 3T3, HEK293), though supervised machine learning
could be used to discard those cells, which grow on top of each
other.

3.4. Spot detection and correction of lens aberrations

The basic strategy for detecting single transcripts as spots has
been developed by Jiri Matas [32] and Arjun Raj and their col-
leagues [17]. After emphasizing spot-like signal by a Laplacian of
Gaussian filter (Fig. 5A), a threshold for the detection of objects
is chosen such that, on each single image, the specific value of
the threshold only mildly affects the number of detected tran-
scripts (Fig. 5B and C). As the numerical value of the threshold will
partially depend upon the absolute intensity of the acquired
images, we rescale the intensities of individual images such that
they are comparable between different images and a single
numerical value for the threshold can be chosen (Fig. 5C). This
seemingly minor, but essential, detail of our image-analysis pipe-
line contrasts the most common high-throughput implementation
of spot detection algorithms, which rescales the intensities of any
image according to the intensities of its dimmest and brightest
pixel [17,28,33]. While the accompanying code supports additional
refinement of the spot detection, these additional parameters
(2D/3D, minimal intensity of pixels, size of spots) have a negligible
effect on the detection of transcripts once robust imaging condi-
tions have been established experimentally.

For identifying the settings for detecting spots, we include on
each experimental plate 4 wells in which bacterial dapB transcripts
are probed (a negative control for mammalian cells), and 4 wells
for probing transcripts of the housekeeping gene HPRT1
(Hypoxanthine Phosphoribosyltransferase 1, which plays a central
role in purine nucleotide synthesis). In a first computational step,
we find the upper- and lower-image intensity boundaries for those
two reference transcripts (see Exp_getIntensitiesOfReferences.m).
The next step detects spots at varying threshold values while
rescaling the intensities of single images according to the previ-
ously identified bounds (see Exp_getSpotCountsOfReferences.m).
Upon completion of the computation, a threshold is chosen manu-
ally such that its specific numerical value only mildly affects the
number of detected transcripts (see Exp_selectDetectionThreshol
d.m). In practice, a fast manual choice and optimization of settings
is as good as a fully computational procedure, but offers the
advantage of being a first quality control of the data. The number
of spots in the dapB negative control should be much lower and
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more sensitive towards changes in the numerical value of the
threshold [4].

Optical aberrations, which tear the signal of individual tran-
script molecules in the corners of an image, make the signal less
spot-shaped. This creates a spatial bias in the detection of tran-
script molecules of approximately ± 3% at different positions of
an image [4]. While it is best to reduce this effect experimentally
(see above), it can be optionally attenuated further by computa-
tionally modifying the threshold for the spot detection at different
positions of an image. Use the ScanSpotThresholds.m CellProfiler
module to test multiple different thresholds surrounding the previ-
ously identified reference threshold. Inclusion of all images of a
plate (recommended: approximately 10,000 images), allows com-
puting the spatial bias of the detection of spots, which can be used
to construct a correction matrix that will modify the spot detection
threshold for each pixel (see Exp_computeCorrectionMatrix.m).

You can now identify spots with a CellProfiler pipeline contain-
ing the IdentifySpots2D.m module; optionally apply a correction
matrix against the spatial bias, which can be loaded by the
LoadSingleMatrix.m module; and, insert the parameters for the
spot detection determined above. Additionally, we recommend
enabling the deblending option, an algorithm from astrophysics
[34], which can spatially resolve individual transcript molecules
below the optical diffraction limit. If a correction matrix for the
spatial bias has been applied, monitor its impact on the spatial bias
of the spot detection (see Exp_checkBiasCorrection.m) and poten-
tially restrict or expand the range of thresholds that have been con-
sidered for the construction of the correction matrix.
Algorithm 3 CPgetSpotLocalizations(LookupImage, VectorWithDistan

1. Initialize Results // a key-value array, containing all measureme
2. Define SpotDistances as all Euclidean distances between spot p
3. // Determine fractions of spots within given distance and dista
4. For each spot in spots
5. For each DistanceOfFraction in VectorWithDistancesForFractions
6. Results[FractionOfSpotsAtDistance] normalize over
7. Select all spots within given DistanceOfFraction exclude t
8. End
9. For each DistanceContainingFractionOfSpots in VectorWithD
10. Results[DistanceContainingFractionOfSpots] Select min(
11. all SpotDistances for a given spot within DistanceContainingFrac
12. End
13. End
14. Results[MeanDistance] mean(columns of SpotDistances);
15. Results[VarianceDistance] variance(columns of SpotDistances);
16. Results[StandardDeviationDistance] sqrt(ResultsVarianceDistan
17. Results[DistanceToCellCentroid] measure distances of all spots
18. // Treat spots at the cell membrane specially.
19. For each spot in spots
20. Determine coordinate of the closest membrane pixel;
21. Results[ShortestDistanceToMembrane] EuclidianDistance(ce
22. Results[DistanceToNucleus] EuclidianDistance(centroid of spot,
23. If EuclidianDistance(centroid of spot, closest membrane pixel)

projection line connecting the centroid of the nucleus and centro
24. Results[DistanceAlongProjection] EuclidianDistance(centroi

along the projection line;
25. else
26. Results[DistanceAlongProjection] ResultsShortestDistance
27. end
28. End
29. Results[MembraneBorderingCell] look up pixel at position wit

pixel, whether closest membrane is adjacent to a cell);
30. return Results.
In addition to the algorithm outlined above, which provides
highly reproducible and specific measurements of the number of
transcripts in a high-throughput experimental setup with bDNA
sm-FISH [4], we would like to note several excellent algorithms,
that have been used with o-nuc sm-FISH to identify those fluores-
cent spots that likely indicate single transcripts [29–31].

3.5. Quantification of spot localization

Being an in situ technology, image-based transcriptomics can
quantify the localization of each single transcript molecule.
Although the subcellular localization of transcripts and it variabil-
ity across single cells can hold more biological information than
single-cell transcript abundance [4], it is not yet used routinely
in functional genomics studies due to technical limitations. This
section describes how this powerful source of information can be
unlocked from image-based transcriptomics data.

Each single transcript molecule can be characterized by a set of
measurements (Algorithm 3), which describe its distance to the
centroid or edge of an organelle or the cell [4]. In addition, the posi-
tion of each transcript molecule can be placed in relation to other
molecules, for instance by measuring the variance of its pairwise
distances to all other molecules, or by counting the number of
transcript molecules within a certain area. Such readouts of single
molecules are created by the MeasureLocalizationOfSpots.m
CellProfiler module [4]. By choosing an arbitrary amount of differ-
ently sized areas, different scales of subcellular crowding can be
compared.
cesForFractions, VectorWithDistanceContainingFractionOfSpots)

nts;
airs (cartesian product);
nces for given fractions of spots;

he spot itself;

istanceContainingFractionOfSpots

tionOfSpots exclude the spot itself);

ce);
to centroid of the cell;

ntroid of spot, closest membrane pixel);
centroid of nucleus);
> sqrt(2) then//spot is not at the membrane;Construct a
id of the spot;

d of spot, closest membrane pixel) // membrane pixel is picked

ToMembrane]

hin LookupImage // LookupImage is an image indicating for each
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Cellular readouts of transcript localization can be derived from
the readouts of single transcript molecules. For instance, one may
compute the first central moments of the distribution of every
readout across all single transcript molecules within a single cell
with the accompanying MeasureChildren.m CellProfiler module
[4], and subsequently quantify properties of the single-cell distri-
butions of these central moments. In practice, these
information-rich multivariate readouts for each single cell, gener-
ated for thousands of cells in a single population, rarely lend them-
selves to ready interpretation or presentation. Therefore, we have
previously developed and documented [4] an unsupervised clus-
tering scheme that uses selected cellular statistics to identify a
small number of main patterns in single cell subcellular transcript
localization. This analysis has been well described by us [4] and
can be computed independently of CellProfiler by our locpatterns
package (https://github.com/pelkmanslab/locpatterns). Briefly,
this package uses the per-cell mean and standard deviation of
the single-transcript localization features to first identify a number
of different patterns, by clustering random subsets of cells, such
that the clusters are most reproducible. In a second step, it deter-
mines the similarity of each single cell to each of the identified
patterns.

Supervised machine learning can be further applied to classify
cells with a distinctive subcellular localization of transcripts [23].

One convenient way to evaluate the basic computational quan-
tification of the localization of transcript molecules is the median
distance of all transcript molecules to the nucleus. Plotting the
median of this single-cell readout for multiple genes should yield
a bimodal distribution (Fig. 6A): transcripts, which become trans-
lated at the endoplasmic reticulum (ER), should have a shorter dis-
tance to the nucleus compared to transcripts with a cytoplasmic
translation. For instance, we noticed that transcripts of RAB13,
which have previously been described to enrich in filopodia [35],
tended to be furthest from the nucleus (Fig. 6B). One way of con-
trolling finer details of the localization of transcripts is the unbi-
ased clustering of genes by multiple readouts of the localization
of transcripts. Mitochondrially-encoded transcripts should be
identified as a group of colocalizing transcripts even when mito-
chondria are not stained [4]. Furthermore, at least in HeLa cells,
one should observe a further sub-clustering of different groups of
mitochondrially-encoded transcripts reflecting different positions
within the mitochondria [4]. In addition, this may reveal further
subclustering of transcripts translated at the ER [4], as well as tran-
scripts translated in the cytoplasm. Such findings indicate exten-
sive functional subcompartmentalization of the transcriptome,
both on organelles and in the cytoplasm, which are properties of
posttranscriptional control of gene expression that have remained
hidden thus far.
4. Conclusion

Image-based transcriptomics combines precise counting of
transcript molecules with a unique multivariate quantification of
the subcellular position of each single transcript molecule for thou-
sands of genes in tens of thousands of single cells. Being an
image-based in situ technology it can be readily combined with
image-based assays, which monitor additional specific biological
markers of interest. To enable such lines of research, every exper-
imental and computational step of image-based transcriptomics
needs to be highly reproducible across different weeks and geared
towards the quantification of single molecules. To enable
image-based transcriptomics to reach its full potential, we
developed computer vision algorithms that build on and improve
those currently used to detect objects in confocal images. By using
iterative watershedding we have improved the segmentations of
nuclei and cells. In addition, we describe how to perform spot
detection for transcript identification in an automated way for
thousands of images. Accurate detection of nuclear outlines, cell
outlines, and transcript molecules are essential for the correct
quantification of a high-dimensional multivariate feature space of
each transcript and to reveal bona fide novel properties of the spa-
tial organization of the transcriptome [4]. The computer vision
pipeline presented here complements our earlier work [4], and
can be used independently of transcripts in other image-based
approaches. It also forms a practical guide on how to extend
image-based-assays to mapping small particles relative to spatial
hallmarks of single cells. Indeed, the highly robust and automated
protocol of the underlying computer vision pipeline has been
instrumental for uncovering parameters of gene expression, which
remain otherwise hidden.
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