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SUMMARY

Cell entry of Simian Virus 40 (SV40) involves cav-
eolar/lipid raft-mediated endocytosis, vesicular
transport to the endoplasmic reticulum (ER),
translocation into the cytosol, and import into
the nucleus. We analyzed the effects of ER-
associated processes and factors on infection
and on isolated viruses and found that SV40
makes use of the thiol-disulfide oxidoreduc-
tases, ERp57 and PDI, as well as the retrotrans-
location proteins Derlin-1 and Sel1L. ERp57
isomerizes specific interchain disulfides con-
necting the major capsid protein, VP1, to a
crosslinked network of neighbors, thus uncou-
pling about 12 of 72 VP1 pentamers. Cryo-elec-
tron tomography indicated that loss of inter-
chain disulfides coupled with calcium depletion
induces selective dissociation of the 12 vertex
pentamers, a step likely to mimic uncoating of
the virus in the cytosol. Thus, the virus utilizes
the protein folding machinery for initial uncoat-
ing before exploiting the ER-associated degra-
dation machinery presumably to escape from
the ER lumen into the cytosol.

INTRODUCTION

During entry into host cells, animal viruses typically un-

dergo a process of stepwise destabilization and uncoating

according to a program that is linked in time and space

with the movement of the particle from compartment to

compartment in the cell (Marsh and Helenius, 2006).

In this study, we have analyzed the uncoating and pen-

etration of Simian virus 40 (SV40), a simple, nonenveloped

DNA virus of the polyoma virus family. It uses the ganglio-
516 Cell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc.
side GM1 as receptor, and enters host cells by activating

the caveolar/lipid raft pathway of endocytosis (Damm

et al., 2005; Pelkmans et al., 2001; Tsai et al., 2003). After

internalization, the first station is the caveosome, a pH-

neutral, caveolin-containing endocytic organelle distinct

from classical endosomes. From the caveosome, the virus

moves in noncaveolar vesicles along microtubules to the

endoplasmic reticulum (ER) (Kartenbeck et al., 1989; Pelk-

mans et al., 2001). After translocation from the ER into the

cytosol, the virus is thought to enter the nucleus via nu-

clear pore complexes where transcription and replication

take place (Clever et al., 1991; Estes et al., 1971; Nakanishi

et al., 1996).

SV40 and related polyoma viruses are unusual in several

respects. First, their DNA genome is associated with his-

tones in a circular complex containing 20–22 nucleosomes

(Varshavsky et al., 1977). Second, the 50 nm capsids are

composed of homopentamers of the major capsid protein,

VP1 (43 kDa) associated with one of the minor structural

proteins VP2 or VP3. The virus has icosahedral (T = 7) sym-

metry, and contains 72 pentamers of which 12 are five- and

60 six-coordinated (Liddington et al., 1991). The pentam-

ers are connected to each other via C-terminal peptides

extending from a VP1 molecule in one pentamer to docking

sites present in two VP1 molecules of a neighboring pen-

tamer stabilized by calcium ions (Ca2+) (Li et al., 2003).

The pentamers are linked to each other by disulfide bonds

between cysteine 104 (C104) residues (Liddington et al.,

1991).

The aim of our study was to determine why SV40 uses

such an unusual and elaborate entry pathway and to

define possible roles for the ER in the entry process. We

found that isomerization of interpentamer disulfide bonds

in the virus particle plays a central role in the uncoating

process. To initiate disassembly, the virus takes advan-

tage of the protein folding and quality control machinery

present in the ER, before exploiting components of the

ER-associated degradation (ERAD) presumably to escape

from the ER lumen to the cytosol.
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Figure 1. ER Processes and ER Proteins

Are Associated with SV40 Infection

CV-1 (A–C) or HeLa (D) cells were infected with

SV40 (one plaque-forming unit (PFU)/cell). The

data represent the average ± SD of three inde-

pendent experiments.

(A) Pharmacological inhibitors were added

30 min prior to addition of virus and present

during infection (100 mM kifunensine, 5 mM cas-

tanospermine, 20 mM MG-132, 5 mM omuralide,

2 mM geldanamycin, 1 mM thapsigargin, and

5 mM DTT).

(B) As in (A). Inhibitors were present either

throughout infection (black), or added at 8 hr

p.i. (white).

(C) 5 mM DTT was added at given times post-

addition of SV40 (solid line). Alternatively, cells

were infected in the presence of 5 mM nocoda-

zole (noc). At 2 hr p.i, noc was washed out, and

5 mM DTT was added (dashed line). DTT inhibi-

tion was similar with or without noc, a microtu-

bule-dissociating agent that allows virus

uptake into caveosomes but prevents further

transport to the ER (Pelkmans et al., 2001),

and thus confirmed that the DTT sensitive step

occurred after exit from the caveosome.

(D) siRNA silencing was achieved by transfec-

tion of siRNAs (Figure S1). A margin for insig-

nificant pertubations of infection (±20%) was

indicated by dashed lines.
RESULTS

ER Processes Associated with SV40 Entry
We first perturbed ER-associated processes in CV-1 cells

and determined 20 hr postinfection (p.i.) whether infection

was affected using a FACS assay based on T-antigen ex-

pression. Inhibitors of proteasomal degradation (MG-132,

omuralide), ER Ca2+ homeostasis (thapsigargin), and di-

sulfide bond formation (DTT) blocked infection (Figure 1A).

When added 8 hr p.i., they failed to affect infection or had

only partial effects, suggesting that inhibition mainly in-

volved early events (Figure 1B). Addition of DTT at various

times after virus addition showed that the step affected

occurred between 4 and 8 hr p.i. with a midpoint at 5.5 hr

p.i. (Figure 1C). This correlated with the arrival of SV40 in

the ER (Kartenbeck et al., 1989). Inhibition of trimming of

N-linked core glycans by kifunensine (ER mannosidase

inhibitor) and castanospermine (glucosidase inhibitor), or

inhibition of GRP94 and other members of the heat shock

protein 90 chaperones had little effect (Figure 1A).

Next, siRNA-mediated knockdown of ER proteins was

performed in HeLa cells. We confirmed by immunoblotting

that the level of target protein was reduced (Figures S1A–

S1F in the Supplemental Data available with this article

online). While no effect was observed on VSV infectivity

(a virus that does not enter via the ER route, Figure S1H),

depletion of two ER thiol-disulfide oxidoreductases, pro-

tein disulfide isomerase (PDI) and ERp57, significantly

reduced SV40 infection (Figure 1D). In contrast, depletion

of the oxidoreductase TMX3 or ERp29 (an ER protein with

thioredoxin-like fold but lacking the catalytic site), and the
two glycoprotein chaperones, calnexin (CNX) and calreti-

culin (CRT), had no effect (Figure 1D). Silencing of ERp72,

another abundant ER thiol-disulfide oxidoreductase, gave

divergent results for two independent siRNAs that both

reduced ERp72 levels; one enhanced infection, and the

other had no effect (Figure 1D).

Significant inhibition of infection was also observed after

silencing of Derlin-1 and Sel1L (sel-1 suppressor of lin-like

protein, Figure 1D), two transmembrane proteins involved

in the export of misfolded proteins from the ER to the

cytosol for proteasomal degradation (Mueller et al., 2006;

Ye et al., 2004).

The results implied that ER factors involved in disulfide

bond oxidation, reduction, and isomerization were critical

for productive entry. In addition, calcium homeostasis and

ER-associated degradation (ERAD) seemed to play a role.

Free Sulfhydryl Groups and Disulfide Bonds
in Intact Virions
To pursue the oxidoreductases, we first analyzed whether

disulfides and free cysteines in the virus were important

for infectivity. We found that treatment of isolated virus

with 5 mM DTT resulted in full reduction of all disulfide

bonds in the particle (see below) but did not affect infectiv-

ity (Figure 2A) and neither did treatment with the thiol oxi-

dant, diamide. However, alkylation using 4-acetamido-40-

maleimidylstilbene-2,20-disulfonic acid (AMS),or iodoacetic

acid (IAA), reduced infectivity by 70%–80%, suggesting

that one or more free sulfhydryl groups were critical (Fig-

ure 2A). Alkylation or reduction of viruses did not affect

internalization or transport to the ER, as shown by the
Cell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc. 517



Figure 2. Free Sulfhydryls in SV40 Are Critical during Entry

CV-1 cells were infected with SV40 (1 PFU/cell [A]; 10 PFU/cell [B]). The

data represent the average ± SD of three independent experiments.
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colocalization of virus with caveolin-1 2 hr p.i. or with the

ER marker PDI 8 hr p.i. (Figure 2B).

VP1 is the only protein in SV40 that has cysteines. The

X-ray structure shows that four of the seven cysteines

(C87, C207, C254, and C267) are reduced and hidden

within the folded protein or in the interphase between the

subunits (Figures S2A and S2B). C49 is also reduced but

partially exposed on the pentamer surface (Figure S2B,

arrowhead). C104 residues form interchain disulfide bonds

with each other linking VP1 subunits in adjacent pentamers

(Liddington et al., 1991; Stehle et al., 1996). Around the 12

pentamers located at the vertex of the icosahedral capsid,

the situation is special because here the C104 from a VP1

in a five-coordinated pentamer is in close proximity to two

C104 residues from VP1 in two adjacent six-coordinated

pentamers (Figure S2C). The three cysteines form one

disulfide while one C104 is reduced. The seventh cysteine,

C9, is part of a 13-residue, N-terminal peptide that is not

visible in the X-ray structure but thought to be hidden

below the pentamers (Liddington et al., 1991). The inac-

cessibility of C9 to mercury labeling suggests that it may

be disulfide bonded (Liddington et al., 1991).

To determine how many cysteines in VP1 of intact vi-

ruses were alkylated, we used a gel-shift assay based on

the 5 kDa increase in the molecular weight of a protein for

each cysteine alkylated by polyethylene glycol maleimide

(malPEG). The observed shift indicated that only one free

cysteine was accessible for alkylation, and this only in a

fraction of VP1 molecules (Figure 3A, lane 2). To identify

the accessible cysteine(s), we treated the virus with dif-

ferent alkylating agents adding distinguishable masses

as outlined in Figure 3B. Subsequent mass spectrometry

showed that some C104 and C49 were alkylated indicat-

ing that they were reduced and accessible in the intact

virus particle (Figures 3B–3D and S3B and S3C). After

DTT treatment of the virus, additional cysteines became

accessible for alkylation. In addition to C104, C9 was now

also alkylated indicating that in the intact virus it must be

oxidized (Figures 3B–3D and S3B and S3C). Since C104

was exclusively paired with C104 and all other cysteines

were reduced in the intact virus, we concluded that C9

was present in C9-C9 disulfides.

When the virus was analyzed by nonreducing SDS-

PAGE after treatment with iodoacetamide (IAM) before

and during exposure to SDS to alkylate free sulfhydryl

groups in VP1, the majority of VP1 hardly entered the gel

(Figure 3E, lane 3, arrow). We concluded that in intact

viruses, the VP1 proteins were extensively crosslinked with

each other through a network of C104-C104 and C9-C9

disulfide bonds. This was confirmed using sucrose velocity

(A) SV40was thiol-disulfidemodified by reduction (5 mM DTT), oxidation

(5 mM diamide), or alkylation (5 mM AMS or IAA) prior to addition to cells.

(B) Cells were infected with AF488 labeled SV40 in the absence or pres-

ence of 5 mM DTT. Alternatively, alkylated AF488 labeled SV40 (5 mM

AMS) was added. Cells were fixed at 2 or 8 hr p.i., and immunostained

for caveolin-1 or PDI, respectively. After confocal image aquisition, the

amount of colocalization of SV40 (green) with cellular markers (red) was

quantified and normalized to SV40 in the absence of DTT.



gradient centrifugation of alkylated and SDS-solubilized

virus. The SDS-denatured viruses sedimented homoge-

neously as 125S particles (Figure 3F). Only a minor fraction

of VP1 dissociated from these denatured particles, and

was found on top of the gradient. To form such an exten-

sive disulfide network, we surmised the C104-C104 disul-

fides connected adjacent pentamers as shown by the

X-ray structure, whereas the C9-C9 disulfides were likely

to occur both between pentamers and within pentamers.

The presence of C9-C9 and C104-C104 disulfides was

confirmed by analyzing SV40 mutants in which cysteines

C9 and C104 had been replaced with alanine (Ishii

et al., 1994). Analysis by nonreducing SDS-PAGE showed

that C9A or C104A mutants contained VP1 dimers and

monomers, while C49A mutants exhibited crosslinked VP1

oligomers exactly as the wild-type (Figure 3G, lanes 1–4).

The double mutant C9A/C104A was devoid of disulfide

crosslinked species and contained only monomers (Fig-

ure 3G, lane 5). This confirmed our conclusion that C9-C9

and C104-C104 disulfide bonds provide the crosslinks

between VP1 molecules in the particle.

Loss of Interchain Disulfide Bonds
during SV40 Entry
While the network of interchain disulfide bonds contributes

to the stability of extracellular virus particles, elimination of

some of the bonds is probably necessary for uncoating

and release of the genome during virus entry.

To determine whether interchain disulfide bonds were

actually lost during infection, alkylated and nonalkylated

virus particles were allowed to enter cells for different time

periods up to 10 hr. The fraction of VP1 no longer cross-

linked to the network of disulfides was determined by

alkylating the cell lysates, treating them with SDS, and

subjecting them to nonreducing SDS-PAGE. Immunoblot-

ting showed that while the majority of interchain disulfide

bonds in incoming viruses remained intact, a fraction of

VP1 molecules was released from the disulfide bonded

network showing up as monomers in the SDS-gel. The

amount of VP1 released by SDS remained at values below

2% until 6 hr p.i., when it increased to about 20% (Fig-

ure 4A). The time course of disconnection coincided with

virus arrival in the ER.

Interestingly, the alkylated viruses did not show release

of monomeric VP1 during infection, suggesting that free

sulfhydryl groups were needed to release VP1 molecules

from the disulfide crosslinked network, a requirement con-

sistent with a mechanism based on disulfide isomerization

rather than disulfide reduction. Since the alkylated virus

was non infectious, the result also implied that the loss

of interchain disulfides was an essential part of the pro-

ductive entry pathway.

Depletion of ERp57 by siRNA blocked the generation of

decrosslinked VP1 in HeLa cells (Figure 4B). When PDI

was similarly depleted, no effect was observed. This indi-

cated that it was ERp57 that catalyzed the loss of inter-

chain disulfides. That this occurred by disulfide isomeriza-

tion rather than reduction was shown by the slightly faster
C

migration of the released VP1 compared to the DTT

reduced form of the same protein (Figure 4A, lanes 6–9).

Such differences in mobility indicate presence of intra-

chain disulfides. Since the X-ray structure of VP1 shows

no intrachain disulfides in the intact virus, one or more in-

terchain disulfide bond(s) must have been converted by

ERp57 to intrachain disulfides by isomerization.

Analysis of SV40 cysteine mutants provided additional

insight into the role of disulfide bonds and ERp57. Al-

though formation of these mutant viruses (particularly of

the C104A mutant) was slower and less efficient than

wild-type SV40, we could confirm that they all were infec-

tious. As expected, siRNA-mediated depletion of ERp57

reduced infection of the C49A mutant as much as of

wild-type SV40 (Figure 4C). However, ERp57 depletion

did not affect infectivity of the C9A/C104A mutant, a virus

lacking disulfide crosslinks between pentamers (Fig-

ure 4C). This confirmed that the role of ERp57 is, indeed,

linked to the elimination of C9-C9 and/or C104-C104 inter-

chain disulfide bonds. If such disulfides are lacking as in

the C9A/C104A double mutant, ERp57 is dispensable. It

is noteworthy in this context, that the C9A/C104A mu-

tant—like the C49A mutant and the wild-type virus—was

sensitive to DTT (Figure 4D). This indicated that the inhib-

itory effect of DTT was not due to reduction of viral disul-

fides, but rather to an effect on cellular factors.

ERp57 and PDI Modify SV40 Disulfides In Vitro
Incubation of isolated virus in cytosolic extracts or in a buf-

fer mimicking the reducing and Ca2+-free environment of

the cytosol failed to induce loss of interchain disulfides in

SV40 (Figure 5A, lanes 4 and 5, and Figure 5B). The same

was found when the virus was incubated in a buffer mimick-

ing the oxidizing conditions of the ER (Figure 5A, lane 5).

However, when either isolated PDI or ERp57 were

added to the redox buffer, significant loss of interchain

disulfides was observed using the SDS-PAGE assay (Fig-

ures 5D and 5E, lanes 3–6). Again, about 20% of the VP1

proteins were found to be uncoupled from the capsids us-

ing either of the oxidoreductases. When the two enzymes

were inactivated by alkylation, no release of VP1 occurred

indicating a direct role for the thiol-disulfide oxidoreduc-

tase function (Figures 5D and 5E, lane 7). The full effect

was reached with one oxidoreductase molecule per ten

viruses indicating a catalytic effect. Incubation with both

oxidoreductases together did not increase the amount of

monomeric VP1 (Figure 5F, lane 4).

To investigate whether ERp57 and PDI served as reduc-

tases or isomerases in vitro, alkylated SV40 was used as a

substrate. PDI was found to release a similar amount of

reducedVP1 as fromcontrol virus (Figure5E, lane8). ERp57

failed to release any VP1 (Figure 5D, lane 8). Hence, ERp57

seemed toact asan isomerase, PDI asa reductase.Wealso

investigated whether Ca2+ chelation would increase the ef-

ficiency of VP1 release. Only PDI showed such an increase

(Figures 5D and 5E, lane 9), suggesting that PDI acts most

efficiently on disulfides when the SV40 particle has under-

gone a structural change induced by the loss of Ca2+ ions,
ell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc. 519



Figure 3. Characterization of SV40 Cysteines in Intact Virions

(A) Intact SV40 particles were alkylated by malPEG, followed by DTT reduction and alkylation of all remaining cysteines by IAA in the presence of SDS

(lane 2). Alternatively, SV40 was reduced in the presence of SDS and alkylated with IAA (lane 1) or with malPEG/IAA mixtures (as indicated). The latter

identified band shifts conferred by single or multiple (up to four) malPEG modifications (lanes 3 and 4) Numbers indicate the order of addition of the

reagents.

(B) Outline for the identification of the individual SV40 cysteines present as free sulfhydryls or disulfide bonded by mass spectrometry. Strategy 1

labeled reduced and exposed cysteines differently than all other cysteines by alkylation with IAM of intact SV40. All further cysteines were alkylated
520 Cell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc.



e.g., through the externalization of the C-terminal arm of

VP1, which is normally held in place by the cation.

The monomeric VP1 generated in vitro after ERp57 and

ERp57/PDI incubation migrated identically to VP1 re-

leased during infection in vivo (Figure 5F, compare lanes

1, 3, and 4). In contrast, the band generated by PDI alone

migrated like the completely reduced species (Figure 5F,

lanes 2 and 5). This was consistent with a disulfide isom-

erization from interchain to intrachain disulfides in VP1

by ERp57, but not by PDI.

The results showed that ERp57 eliminates interpenta-

meric disulfide bonds in SV40. As during cell entry, ERp57

catalyzes in vitro the disconnection of about 20% of pen-

tamers by disulfide isomerization. In contrast, PDI induces

reduction of disulfides in vitro, a reaction that does not

occur during virus entry.

Release of Five-Coordinated Pentamers
Judging by the mobility of VP1 in SDS gels, the stabilizing

network of disulfide crosslinks was eliminated by treat-

ment with DTT (Figure 3A, lane 2). This did not cause dis-

sociation of the particle. Velocity centrifugation of reduced

virus showed only a shift in the sedimentation coefficient

from 250S for control virus to 245S (Figure 6A). A similar

shift was seen when the virus was treated with the

Ca2+-chelating agent EGTA to remove the VP1-bound

Ca2+ ions, and thus weakened the interpentamer connec-

tions provided by the invading C-terminal arms. Negative

stain electron microscopy indicated that when applied

alone,bothof these treatments induced penetration of stain

into the capsids, consistent with loosening pentamer con-

tacts, but the particles remained intact (Figure 6B, b and c).

However as previously reported (Hartmann and Scott,

1981), a major structural change occurred when DTT

and EGTA were added together. EM showed release of

doughnut-shaped particles with a diameter of 12 nm

corresponding most likely to VP1 pentamers (Figure 6B, d

and e). However, amorphous capsid structures were still

present with visible capsomers (Figure 6B, d).

Sucrose velocity gradient sedimentation analysis

showed that combined DTT-reduction and Ca2+ chelation

resulted in two peaks of VP1 corresponding to pentamers

at the top of the gradient and modified capsids that sedi-
C

mented at 230S (Figure 6A). The 230S particles contained

the viral DNA but only about half of the VP1 and VP2/VP3

proteins (Figures 6C and 6D). Partial uncoating of the virus

could thus be induced in vitro by combined reduction of

interchain disulfide bonds and extraction of the VP1 asso-

ciated Ca2+ ions.

When the partially uncoated viruses were viewed by

cryo-electron microscopy with tomographic reconstruc-

tion, the particles had lost the capsomers located at the

vertices but retained all six-coordinated capsomers (Fig-

ures 6F and S4). This suggested that the 12 five-coordi-

nated pentamers were less tightly associated than the rest,

and dissociated selectively when the interchain disulfides

and the associations provided by C-terminal peptides

were lost. Interestingly, when SV40 capsids devoid of DNA

(‘‘empty particles’’) were subjected to the same disassem-

bly conditions, no remnant capsids were observed. The

entire capsid dissociated into slowly sedimenting pentam-

ers (Figure 6E). It is thus possible that the viral minichromo-

some, located in the central cavity, interacts with pentam-

ers and increases the stability of the particle.

While no obvious structural alterations of SV40 particles

incubated in vitro with ERp57 and/or PDI could be ob-

served by EM after negative staining, sucrose velocity gra-

dient centrifugation showed the release of 9% of pentam-

ers after Ca2+ chelation (Figure 6G). This indicated that

both reduction and isomerization of disulfides in vitro can

lead to pentamer release. For pentamer dissociation how-

ever, the loss of disulfide bonds is not sufficient; loss of

Ca2+ ions is also required.

Pertubation of ERAD Affects Infection
The notion that SV40 entry involves the ERAD pathway was

suggested by the sensitivity of infection to proteasome in-

hibitors and to the silencing of Derlin-1 and Sel1L, two pro-

teins involved in retrotranslocation (Figures 1A and 1D)

(Mueller et al., 2006; Ye et al., 2004). The dependence on

PDI for infection (Figure 1D) also indirectly supported

such a connection because Forster et al. (2006) reported

that PDI depletion causes ER retention of misfolded pro-

tein substrates. In contrast, depletion of ERp72, another

abundant PDI-like protein in the ER, increases retrotrans-

location of misfolded proteins (Forster et al., 2006).
by MMTS, after DTT reduction and SDS-denaturation. Strategy 2 labeled the reduced and exposed as well as the disulfide bonded cysteines differ-

ently than the reduced and hidden species (gray) by DTT reduction followed by IAM alkylation. IAM was quenched with DTT, and hidden cysteines

were alkylated by MMTS in the presence of SDS. Samples were submitted to SDS-PAGE and Coomassie staining. VP1 was excised and subjected to

an in-gel trypsin digest; peptides were eluted and analyzed by mass spectrometry. The mass difference for IAM and MMTS was used to distinguish

individual cysteines.

(C) Summary of the thiol-modifications of VP1 cystein residues detected by mass spectrometry (see also Figure S3 and Tables S1 and S2).

(D) Ribbon diagram of a single VP1 molecule as present in a pentamer. Highlighted in red are the cysteine residues. Dashed lines indicate reduced and

exposed cysteines; solid lines indicate disulfide bonded cysteines.

(E) Nonreducing SDS-PAGE and Coomassie staining of purified SV40 after treatment with SDS, DTT (lane 1), or after subsequent treatment with DTT,

IAM, and SDS (lane 2), with IAM and SDS (lane 3), or with IAM, DTT, and SDS (lane 4). Numbers indicate the order of addition of reagents. All disulfides

could be reduced prior to addition of SDS (lane 2). Arrowhead indicates minor amounts of dimers (lane 3).

(F) Sedimentation analysis of IAM-alkylated and SDS-denatured (as in [E], lane 3) as compared to untreated SV40 on a linear 5%–20% sucrose

gradient.

(G) Wild-type and mutant SV40, where single or double cysteines had been exchanged for alanine, were produced by pNO-SV40-VP1 transfection

(lanes 1–5). As control, wild-type SV40 grown by infection was used (lane 6). Preparations were alkylated (IAM), subjected to nonreducing SDS-PAGE,

and immunoblotted against VP1. Arrowhead indicates monomers in the C104A mutant (lane 4).
ell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc. 521



Figure 4. ERp57-Mediated Isomerization of SV40 Disulfides Decrosslinks VP1 Molecules

(A) CV-1 cells were infected with either untreated or AMS-alkylated SV40 (10 PFU/cell) for indicated times p.i. (lanes 4–9). As controls, SV40 was

bound to cells at 4�C (lane 3) or infection occurred in the presence of 5 mM nocodazole (lane 2) to prevent internalization or transport from caveo-

somes, respectively. Cell lysates were prepared after alkylation with MMTS or NEM (data not shown). Lysates were analyzed by nonreducing SDS-

PAGE and were immunoblotted against VP1. The VP1 antiserum showed much higher affinity against disulfide crosslinked molecules (especially

dimers) than monomeric VP1. Hence, relative signal intensities of monomeric VP1 (boxed) were always compared to the fully reduced input (lane 9).

The mean values of three independent experiments ± SD are shown.

(B) PDI and ERp57 were silenced by siRNA transfection in HeLa cells prior to infection with SV40 (50 PFU/cell). The proteins of infected cells were

alkylated with 5 mM MMTS (10 hr p.i.). Cell lysates were analyzed by nonreducing SDS-PAGE and immunoblotted against VP1. Quantification as in (A).

(C) HeLa cells silenced for ERp57 were infected with mutant and wild-type SV40 (1 PFU/cell).

(D) CV-1 cells were infected with mutant and wild-type SV40 (1 PFU/cell) in the presence or absence of DTT.

The data represent the average ± SD of three independent experiments.
522 Cell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc.



Figure 5. ERp57 Isomerizes SV40 Disulfide Bonds In Vitro

(A) SV40 was incubated for 1 hr (37�C) in glutathione redox buffer in the presence or absence of 5 mM EGTA. The molecular ratios of reduced versus

oxidized glutathione (GSH:GSSG) mimicked reducing cytosolic (100:1, lanes 4 and 5) or oxidizing ER conditions (1:1, lane 6). After 5 mM IAM

alkylation, nonreducing SDS-PAGE, and immunoblotting against VP1, the amount of monomeric VP1 was determined as compared to the DTT

reduced input. Mean values of relative signal intensities ± SD are shown.

(B) SV40 was incubated for 1 hr (37�C) in cytosolic extracts from HeLa cells. Analysis as in (A).

(C) SDS-PAGE and Coomassie staining of purified ERp57 or PDI.

(D) 50 nM SV40 were incubated for 1 hr (37�C) in ER redox buffer in the presence or absence of 5 mM EGTA with purified ERp57 in the stoichiometries

indicated. As controls, alkylated SV40 or alkylated ERp57 were used. Analysis as in (A).

(E) As in (D) using PDI instead of ERp57.

(F) Comparison of monomeric VP1 released during infection or in vitro. SV40 was treated for 1 hr (37�C) with 5 mM DTT (lane 2), ERp57 (as in [D], lane 3),

PDI (as in [F], lane 5), or both thiol-disulfide oxidoreductases in equal amounts (lane 4) in vitro. Alternatively, CV-1 cells were infected for 10 hr p.i.

(lane 1). Subsequently, in vitro samples or cell lysates were alkylated (5 mM MMTS), submitted to nonreducing SDS-PAGE, and immunoblotted

against VP1.
Cell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc. 523



Figure 6. In Vitro Disassembly of SV40

Representative examples of three independent experiments are shown ([A–E] and [G]).

(A) Sucrose sedimentation analysis on a linear 5%–20% sucrose gradient of untreated, 5 mM DTT, 5 mM EGTA, or DTT/EGTA (5 mM/5 mM)-treated

SV40. Fractions were immunoblotted against VP1.

(B) SV40 (a) was incubated with DTT (b), EGTA (c), or DTT/EGTA (d and e) as in (A), and analyzed by negative EM. Scale bars represent 100 nM.

(C) Sedimentation as in (A) after DTT/EGTA incubation of SV40. To determine the viral DNA, samples were phenol/chloroform extracted, and DNA was

EtOH precipitated and quantified.

(D) As in (A). Fractions immunoblotted against VP1 and VP2/VP3.

(E) As in (A). Instead of infectious SV40, so-called empty particles lacking the minichromosome were used.

(F) Surface rendering of the three-dimensional structure of SV40 from cryo-electron tomography after icosahedral symmetrization without (blue) or

with (yellow) preincubation with DTT/EGTA. Left structure pair shows the typical orientation of the capsomers, the right structure pair is rotated

horizontally to allow the view onto a vertex, revealing the missing vertex in the DTT/EGTA-treated SV40. Control virus represents average of multiple
524 Cell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc.



To pursue the issue further, we tested whether the cys-

teine mutants C49A and C9A/C104A were also dependent

on these factors. Infectivity of mutant and wild-type SV40

was similarly sensitive to proteasome inhibitors, and to PDI

and Derlin-1 depletion (Figures 7A and 7B). The sensitivity

of the C9A/C104A mutant showed that the step affected

by these perturbations was independent of the ERp57-

mediated disulfide isomerization step.

To confirm that retrotranslocation was affected by these

perturbations, we measured the level of polyubiquitinated

proteins in cells using SDS-PAGE combined with immu-

noblotting for polyubiquitin tagged proteins (Figure 7C).

We found as expected that incubation with the protea-

some inhibitor MG-132 resulted in accumulation of poly-

ubiquitinated proteins. However, when Derlin-1 or Sel1L

were depleted by siRNAs and MG-132 added, fewer poly-

ubiquitinated proteins accumulated compared to control

cells, suggesting that misfolded proteins failed to exit the

ER and thus, failed to be ubiquitinated (Figure 7D). Deple-

tion of ERp57 by siRNAs had no effect while the depletion

of PDI by siRNAs resulted in a clear reduction in the level

of polyubiquitinated protein in the presence of MG-132

(Figure 7D). In ERp72 depleted cells, the situation was

less clear. An increase was seen for the same siRNA that

also dramatically enhanced SV40 infectivity (Figure 7D).

We concluded that when PDI levels were reduced, and

retrotranslocation was impaired, SV40 infectivity was sup-

pressed, while ERp72 depletion, which had the opposite

effect on retrotranslocation of proteins, seemed to enhance

SV40 infectivity. Together with the effects of Derlin-1 and

Sel1L silencing, these results were consistent with a role

for ER retrotranslocation in SV40 entry.

DISCUSSION

Our results indicated that SV40 has chosen the ER route of

entry so that it can take advantage of the protein folding

and quality control machinery in the ER for initial uncoating

and membrane translocation. Through an ERp57-cata-

lyzed disulfide isomerization reaction in the ER lumen, a

sub-population of pentamers (most likely the 12 vertex

pentamers) are disconnected from an extensive network

of disulfide crosslinked VP1 molecules in the capsid, the

first step in the uncoating of SV40. The dependence on

Derlin-1, Sel1L, and PDI suggested that the modified virus

makes use of the ERAD pathway presumably for transport

into the cytosol. We hypothesize that the vertex pentam-

ers are lost when the virus reaches the low Ca2+ in the

cytosol. The overall strategy used by SV40 is thus similar

to that previously described for cholera toxin but more

elaborate due to the structural complexity of the particle

(Tsai et al., 2001).
We found that the SV40 capsid is extensively cross-

linked by interpentameric and possibly also intrapenta-

meric C104-C104 and C9-C9 disulfide bonds between

VP1 molecules. The C9-C9 bonds are not visible in the

X-ray structure because the terminal residues of the N-

terminus are disordered (Liddington et al., 1991). Through

these bonds, virtually all VP1 molecules in the particle are

covalently connected with each other.

The main function of the disulfide bond network is most

likely to stabilize the virus during extracellular passage. Al-

though the virus remains intact after reduction of all disul-

fides, it is less stable particularly in a low calcium environ-

ment. Mutations in C9, C104, or both have been shown

to result in formation of unstable particles that possess

reduced infectivity (Gharakhanian et al., 2001).

Of the VP1 cysteines, C9, C104, and C257 are con-

served among polyoma viruses. Interestingly, an extended

disulfide bonded network is not present in mouse polyoma

virus. The X-ray structure shows the presence of C19-

C114 intrachain disulfides. In SV40, these correspond to

C9-C104 disulfides. Although polyoma virus also enters

the ER, recent studies suggest that the uncoating mecha-

nisms may be different (Lilley et al., 2006; Magnuson et al.,

2005).

A covalently crosslinked capsid shell obviously necessi-

tates special measures during entry. To allow opening of

the capsid and release of the viral chromosome, at least

some of the crosslinks must be eliminated. We found that

about 20% of the VP1 molecules were in fact uncoupled

from an otherwise intact network of disulfide-bonded

VP1s. Since the VP1 s in the mature particle contain no in-

trachain disulfide bonds, such bonds in the disconnected

VP1s likely resulted from an isomerization reaction in

which an interchain disulfide was isomerized to an intra-

chain disulfide. When the acceptor cysteines were alky-

lated, no isomerization was possible, no VP1 molecules

were released, and the virus was noninfectious. When

SV40 was incubated in a cytosolic extract or in glutathione

redox buffers mimicking conditions in the ER or cytosol,

there was no reduction or isomerization of disulfides, con-

sistent with the need for a thiol-disulfide oxidoreductase in

the isomerization process.

The evidence that ERp57 was the thiol-disulfide oxido-

reductase required was four-fold. First, siRNA silencing of

this abundant, soluble ER enzyme resulted in a 5-fold

reduction of SV40 infection. Second, with ERp57 silenced,

VP1 disconnection from the disulfide crosslinked network

did not occur. Third, incubation of SV40 in vitro with iso-

lated ERp57 reproduced in every detail the observations

made in vivo. Finally, infection by the C9A/C104A mutant

that lacks disulfide bonds was not sensitive to ERp57

silencing.
viruses; while due to the overall heterogeneity in virus diameter in the DTT/EGTA-treated population, the structure shown is from one capsid to allow

a clearer view for the hexameric capsomers. The missing vertex density was, despite the heterogeneity in this preparation, the striking feature of the

structure averaged from all reconstructed DTT/EGTA-treated capsids.

(G) Sedimentation of SV40 after incubation with ERp57 or PDI, and EGTA addition (as in Figures 5D and 5E, lane 9) on a linear 5%–20% sucrose

gradient. Fractions were immunoblotted against VP1. EGTA addition was essential for pentamer release.
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Figure 7. Interference with ER to Cytosole Retrotranslocation Coincides with Pertubation of SV40 Infection

(A) CV-1 cells were infected with SV40 (wild-type and cysteine mutants) in the presence or absence of the proteasome inhibitor MG-132 (20 mM). The

data represent the average ± SD of three independent experiments.

(B) HeLa cells that were silenced with siRNAs directed against Derlin-1, PDI, or Luciferase were infected with SV40 (wild-type and cysteine mutants).

The data represent the average ± SD of three independent experiments.

(C) HeLa cells were treated with MG-132 for 16 hr. Cell lysates were subjected to SDS-PAGE and immunoblotted against ubiquitin. Shown are the

polyubiquitinated proteins (poly-Ub). Poly-Ub levels as compared to MG-132-treated cells were depicted as mean ± SD.

(D) Poly-Ub levels under siRNA-silencing conditions: HeLa cells were silenced for Derlin-1, Sel1L, PDI, ERp57, or ERp72, and all cells were treated

for16 hr with MG-132 prior to cell lysis. Poly-UB levels as compared to control cells (Luciferase) were depicted as mean ± SD.
Our results suggested that ERp57 reduces a C9-C9

disulfide and replaces it with the C9-C104 intrachain disul-

fide by using the free C104 in the threesome of cysteines

at the vertex as acceptor. The corresponding C19-C114

disulfide of mouse polyomavirus indicated the feasibility
526 Cell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc.
of this connection (Stehle et al., 1996). It is noteworthy,

that only at the vertex, a cluster of three closely spaced

C104 residues involving one VP1 of a five-coordinated

pentamer and two VP1s in neighboring six-coordinated

pentamers exists (Stehle et al., 1996; Figure S2). The



weak electron density in this region could be explained by

flexibility and/or by randomness as to which of the cyste-

ines participate in the C104-C104 disulfide bond (Stehle

et al., 1996). With two of the C104 cysteines disulfide

bonded, one must remain reduced. Our results indicated

that this free sulfhydryl was essential in the initial uncoat-

ing process; when it was alkylated the virus reached the

ER but failed to infect. The second cysteine residue

accessible for alkylation, C49, is located too far from the

disulfides to serve as an acceptor for isomerization, and

the properties of the C49A mutant virus did not differ from

the wild-type.

As a consequence of the loss of the C9-C9 disulfide, the

covalent connections between the vertex pentamers and

the hexavalent neighbors are lost. Although 20% of the

VP1 molecules no longer participate in the disulfide-

bonded network, all pentamers remain associated with the

virus particle as long as the Ca2+ ions are in place. Our

in vitro experiments using cryo-electron tomography and

mass spectrometry suggested that the pentamers discon-

nected from the crosslinked network constitute the 12

vertex pentamers. At least in vitro, we found that the re-

lease of these pentamers from a reduced particle required

extraction of the Ca2+ ions known to stabilize the interac-

tion between VP1 and the C-terminal arm of a neighbor-

ing VP1. Thus, to release the vertex pentamers, both the

covalent disulfide connections had to be broken and the

C-terminal arms had to dissociate from the neighboring

pentamers.

Although clearly favored by our observations, a role for

ERp57 in SV40 uncoating raised some questions. How can

this enzyme reach cysteines and disulfide bonds located

on the inner surface of the capsid wall? The dimensions

of ERp57 can be deduced from the crystal structure of

the b-b0 domain and analytical ultracentrifugation studies;

the thioredoxin-like domains have a diameter of about

3.5 nm (Frickel et al., 2004; Kozlov et al., 2006). The X-ray

structure of the virus shows that the capsid wall has open-

ings of about 3-5 nm in size (Liddington et al., 1991), which

may be big enough if one considers the dynamics of viral

capsids, i.e., so-called ‘‘breathing’’ (Lewis et al., 1998),

and if one assumes a flexible structure for the oxidoreduc-

tase (Tian et al., 2006).

Another question concerns the association of ERp57

with calnexin (CNX) and calreticulin (CRT), and its function

as a thiol-disulfide oxidoreductase for glycoproteins. We

did not observe any effect on infectivity by inhibitors that

block glycoprotein trimming and entry into the CNX/CRT

cycle. siRNA silencing of CNX and CRT failed to affect

virus infection. It is therefore likely that ERp57 interacts

with SV40 independently of CNX and CRT.

While essential for productive entry of the wild-type

virus, we found that ERp57 was dispensable for the C9A/

C104A mutant, a virus devoid of disulfide bonds. That this

mutant virus was still sensitive to DTT, to proteasome

inhibitors, and to the depletion of Derlin-1, Sel1L, and PDI

indicated that there are ER-associated steps during entry

beyond ERp57-induced rearrangement of disulfide bonds.
That these events included translocation of the virus from

the ER lumen to the cytosol was suggested by the identity

of the factors and inhibitors identified. Derlin-1 is a mem-

brane protein involved in the translocation of ERAD sub-

strates from the ER to the cytosol for degradation by pro-

teasomes (Ye et al., 2004). Sel1L is predicted to be a type I

transmembrane protein and thought to function in sub-

strate recognition for ERAD (Mueller et al., 2006). PDI

silencing has been shown to inhibit polyubiquitination of

proteins and retrotranslocation of misfolded proteins (For-

ster et al., 2006; Tsai et al., 2002), and proteasome inhib-

itors can impair retrograde transport of ERAD substrates

(Hirsch and Ploegh, 2000). Finally depletion of ERp72,

another abundant thiol-disulfide oxidoreductase, by an

siRNA that enhanced retrotranslocation of ERAD sub-

strates (Figure 7B)(Forster et al., 2006), also enhanced

SV40 infection.

These observations indicate that SV40 exploits a ma-

chinery in the ER normally reserved for identification of

misfolded proteins and for retrotranslocation of these

proteins through the ER membrane. The ER is the only or-

ganelle in the cell that possesses a retrotranslocation sys-

tem for macromolecules, a system known to be exploited

by certain bacterial toxins and possibly other viruses

(Lilley et al., 2006; Tsai et al., 2002). How this interaction

works for SV40 at the molecular level poses an interest-

ing problem given the large size of the virus particles.

Future work will have to obtain direct evidence on how

the translocation of the virus from the ER to the cytosol

is achieved.

The overall process is likely to involve additional

changes in the virus such as exposure of VP2/VP3 either

in the ER lumen or after translocation (Daniels et al.,

2006; Norkin et al., 2002), and the exposure of nuclear

localization signals required for import into the nucleus

(Clever et al., 1991; Nakanishi et al., 1996). Although we

have shown here that uncoating starts in the ER by the

isomerization of disulfide bonds, we find it likely that pen-

tamers dissociate from the particle in the cytosol when the

virus encounters a milieu with a low Ca2+ concentration.

The inhibitory effect of thapsigargin may be explained by

the elevation in Ca2+ in the cytosol (Scharff et al., 1988).

The stepwise uncoating program of SV40, which we par-

tially unraveled in this study, clearly provides many inter-

esting questions for future investigation.

EXPERIMENTAL PROCEDURES

Cells, Viruses, Antibodies, and Materials

CV-1 and HeLa cells were from ATCC. SV40 was grown in CV-1 cells,

purified, and flourescently labeled as described (Pelkmans et al.,

2001). Mutant SV40 and recombinant VSV expressing GFP were

prepared as described (Ishii et al., 1994; Pelkmans and Zerial,

2005). Antibodies were from StressGene (PDI, SPA890; ERp72,

SPS720), Santa Cruz Biotechnology (caveolin-1, Cav1N2), Alexis Bio-

chemicals (Sel1L, MSel1), or Sigma (beta-actin, AC-15; ubiquitin,

U5379). Antibodies against T-antigen (T-ag), VP1, ERp29, TMX3,

and ERp57 have been described (Frickel et al., 2004; Haugstetter

et al., 2005; Pelkmans et al., 2001, 2002; Rainey-Barger et al.,
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2007). VP2/3 antiserum was raised in rabbits immunized with the

synthetic C-terminal VP2/3 peptide (CSASAKARHKRRNRSSRS).

Secondary antibodies and AMS were from Molecular Probes. Methyl

methanethiosulfonate (MMTS) and N-ethylmaleimide (NEM) from

Pierce, malPEG from Eprova, MG-132 and thapsigargin from Calbio-

chem, omuralide from Cayman Chemicals, kifunensine from Toronto

Research Chemicals, and geldanamycin from AG Scientific. All other

reagents were from Sigma.

Infection Studies

Cells were infected with SV40. At 20 hr p.i., cells were trypsinized, fixed

in 4% formaldehyde, permeabilized with 0.05% saponin, and incu-

bated in FACS buffer (20 mM EDTA, 0.02% NaN3, 2% FCS, 0.1%

saponin, PBS pH 7.4) successively with a-T-ag and a-mouse AF647

antibodies. Cells were analyzed for T-ag signals by FACS. 10,000 cells

were counted, and the percentage of cells with T-ag signal (infected

cells, z20%) was determined and normalized to 100% for the control

situation. In each case, mean values of minimum three independent

experiments ± standard deviation (SD) were shown.

siRNA-Mediated Silencing

siRNA experiments were performed with siRNAs from QIAGEN or

Ambion (Figure S1). Silencing was achieved by double transfection

of 105 HeLa cells with Hiperfect (QIAGEN). 48–72 hr posttransfection

(Figure S1) cells were infected with SV40, or cell lysates were

prepared.

Thiol-Disulfide Modification of SV40

Thiol-disulfide modifications were performed successively for 1 hr (RT)

in the dark by addition of reagents in virion buffer (10 mM HEPES [pH

8.0], 150 mM NaCl, and 1 mM CaCl2). For in vitro disassembly, virus

was incubated with 5 mM dithiothreitol (DTT), 5 mM EGTA, or both.

Alternatively, virus was dialyzed O.N. (4�C) against glutathione redox

buffer, or added to cytosolic extracts of HeLa cells (Kutay et al., 1997)

which contained 8 mM reduced glutathione. For sequential alkylation

of reduced and oxidized cysteines, initially 5 mM alkylating reagent

was added, followed by subsequent addition of 10 mM DTT and

20 mM alkylating reagent different to the one initially used as indicated.

2% SDS was present during the final alkylation reaction, if indicated.

Immunofluorescence Microscopy

CV-1 cells were seeded on glass coverslips and incubated with AF488-

labeled SV40 for 2 hr. At 2 or 8 hr p.i., cells were fixed in 2% formalde-

hyde, permeabilized with 0.05% saponin, and incubated with the ap-

propiate primary and secondary antibodies. Cells were analyzed by

confocal microscopy (Zeiss 510 meta). Signals were obtained within a

linear range of intensities. The amount of signal overlap was quantified

for each confocal slice using Zeiss software. The signal overlap (30%–

70%) was determined for at least ten fields of view per experiment and

all confocal slices thereof. The signal overlap was normalized to 1 for

unperturbed SV40 and compared to SV40 in the presence of 5 mM

DTT, or to AMS-alkylated SV40.

Biochemical Analysis of SV40 during Infection

The proteins of infected cells were alkylated by incubation with either

NEM or MMTS (5 mM) for 15 min at 37�C in the dark, lysates were pre-

pared followed by nonreducing SDS-PAGE and immunoblotting.

In Vitro Analysis of ERp57- and PDI-Mediated SV40

Disulfide Modifications

ERp57 and PDI were purified as described (Frickel et al., 2004). SV40,

ERp57, and PDI were dialyzed O.N. (4�C) against glutathione redox

buffers (virion buffer including reduced (GSH) and oxidized (GSSG)

glutathione: for cytosolic conditions 8 mM GSH, 80 nM GSSG, for

ER conditions 4 mM GSH, 4 mM GSSG). 50 nM SV40 and indicated

amounts of ERp57 or PDI were mixed and incubated at 37�C for 1 hr.
528 Cell 131, 516–529, November 2, 2007 ª2007 Elsevier Inc.
Samples were alkylated (5 mM IAM), and analyzed by nonreducing

SDS-PAGE and immunoblotting.

Sucrose Gradient Sedimentation

Samples were loaded on 5%–20% linear sucrose gradients

(10 mM HEPES pH 8.0, 50 mM NaCl), and centrifuged for 75 min at

220,000 g (4�C). Fractions were TCA-precipitated and analyzed for

VP1 or VP2/3 content by SDS-PAGE and immunoblotting. Signal

intensities were recorded using a Storm scanning device within linear

range and densitrometrically analyzed using ImageJ (NIH). Alterna-

tively, phenol-chloroform extracted fractions were analyzed for dsDNA

content by the Quant-It DNA assay kit (Molecular Probes). In each

case, normalized signal intensities for a representative gradient of

minimum three independent experiments are given.

Electron Microscopy

Virus samples were applied on a carbon-coated 400-mesh for 30 s.

Grids were stained for 30 s with 2% (w/v) uranyl acetate in ddH2O.

Transmission electron microscopy was performed using a FEI

Morgagni 268D electron microscope at 100 kV. Images were analyzed

using Soft Imaging System Software (analySIS).

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, four figures, and two Excel tables and can

be found with this article online at http://www.cell.com/cgi/content/

full/131/3/516/DC1/.
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