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Mechanisms of cellular mRNA
transcript homeostasis

Scott Berry ®'2* and Lucas Pelkmans'*

For most genes, mRNA transcript abundance scales with cell size to ensure a
constant concentration. Scaling of mRNA synthesis rates with cell size
plays an important role, with regulation of the activity and abundance of RNA
polymerase Il (Pol ll) now emerging as a key point of control. However, there is
also considerable evidence for feedback mechanisms that kinetically couple
the rates of mRNA synthesis, nuclear export, and degradation to allow cells to
compensate for changes in one by adjusting the others. Researchers are
beginning to integrate results from these different fields to reveal the
mechanisms underlying transcript homeostasis. This will be crucial for moving
beyond our current understanding of relative gene expression towards an
appreciation of how absolute transcript levels are linked to other aspects of the
cellular phenotype.

mRNA concentration homeostasis in single cells

Homeostatic mechanisms provide cells with an ability to maintain constant concentrations of
biochemical reactants and are therefore crucial for proper cellular function. One example of this
is the setting and maintaining of constant concentrations of mRNA transcripts. This is likely to
be important for all life forms. In multicellular organisms, cells have a wide range of sizes while
often having the same amount of DNA. In unicellular organisms, cell sizes vary according to
environmental conditions and cells can grow and divide at different rates. In both cases, the tran-
scriptome arising from a constant DNA template must be coordinated with cell size (Figure 1A).

The topic of MRNA transcript homeostasis has been studied sporadically over the past 60 years and
overlaps with the question of how cell size is determined (reviewed in [1-3]). Whereas historical work
on scaling of transcript abundance with cell size focused mainly on bulk biochemical comparisons of
differently sized cells (reviewed in [4,5]), more recent studies have combined approaches from
genetics, quantitative imaging, next-generation sequencing, and mathematical modeling. These
studies have begun to provide glimpses of the mechanisms underlying transcript concentration
homeostasis in single cells.

We begin by briefly reviewing the evidence for scaling of mMRNA abundance with cell size and then
delve deeper into how mRNA production rates (see Glossary) and mRNA degradation rates
are coordinated with cell size. We then discuss how the coordination of these rates with one
another has been revealed through perturbation studies, and finally describe the current state
of knowledge regarding the mechanisms underlying mRNA concentration homeostasis.

mRNA abundance scales with cell size

Single-molecule RNA fluorescence in situ hybridization (smFISH) together with quantification of
cell size allows gene-specific measurement of MRNA concentration at the single-cell level. This
has been performed in unperturbed Schizosaccharomyces pombe [6], Saccharomyces cerevisiae
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Figure 1. Cellular mRNA concentration homeostasis. (A) Unlike the DNA template, the amount of mRNA in a cell increases over the cell cycle in proportion to the
absolute abundance of protein and the volume of the cell. Total mMRNA and protein concentrations are typically constant. (B) mRNA and protein abundance increase
with cell volume when cell size is perturbed or changes during differentiation. (C) mRNA concentration homeostasis requires that mRNA production rates increase with

cell size or that mRNA degradation rates decrease with cell size, or some combination of the two (‘hybrid’) (Box 2).

[71, Arabidopsis thaliana [8], Caenorhabditis elegans [9], and human cells [9-12]. With a few notable
exceptions (Box 1), these experiments have revealed that gene-specific transcript abundance is
generally coordinated with cell size — known as size-scaling. This is in agreement with bulk studies
of total cellular RNA content in rat, which showed that differences in average cell size roughly reflect
differences in RNA to DNA ratios over a 16-fold range, indicating that the amount of RNA produced
from the DNA template scales with cell size over a large range in vivo [13].

In S. pombe, cell size can be altered in mutants that uncouple cell growth from division. In these
cases, mMRNA abundance changes are coordinated with changes in cell size [14—16], indicating
that mRNA concentration is maintained despite changes in cell size. Moreover, a recent image-
based screen in human cells across hundreds of genetic perturbations also revealed that total
cellular RNA and mRNA abundances typically remain stable even when cell size or bulk RNA
production rates are dramatically altered [12,17]. mRNA abundance is therefore closely and
robustly linked to cell size to maintain constant concentrations of mRNA transcripts (Figure 1B).

Coordination of mRNA synthesis rates with cell size

The average lifetimes of mMRNA molecules are typically an order of magnitude shorter than the
timescale over which cells grow (reviewed in [18]). For example, in S. cerevisiae, which divides
approximately every 90 minutes, the median mRNA half-life is 11 min [19]. By contrast, in
mammalian cells that divide approximately once per day, the median mRNA half-life is 3.4 h
[20]. These short mRNA lifetimes underlie the ability of cells to rapidly change concentrations of
specific transcripts by simply changing the production rate (and not necessarily the degradation
rate) of these transcripts. However, such short lifetimes also imply that mRNA molecules are
typically replenished several times within a cell cycle. mMRNA synthesis and/or mRNA degradation
rates must therefore be controlled according to cell size to achieve mRNA concentration homeo-
stasis (Box 2).

In principle, cells could coordinate mRNA abundance with cell size by either increasing mRNA
production rates or decreasing mRNA degradation rates in larger cells — or by a combination of
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Box 1. How pervasive is transcriptome size-scaling?

Profiling the transcriptomes of S. pombe mutants of different cell sizes revealed that the relative expression levels of
individual genes remain constant over a wide range of cell sizes even though the absolute mRNA abundance increases
proportionally to cell size changes [16]. This suggests that size-scaling is a transcriptome-wide phenomenon. Combining
imaging and single-cell RNA-seq of unperturbed S. pombe cells also led to similar conclusions, although a few genes that
escape size-scaling were reported [93]. In agreement, comparing populations of G1-arrested S. cerevisiae cells of different
sizes, as well as G2/S/M cells sorted into different size fractions, indicated that most transcripts scale with cell size [7]. In
this case, notable exceptions were mRNAs encoding histone proteins, which scale with DNA content rather than with cell
size, and also WHI5 — a gene involved in cell-cycle control and cell size regulation [7]. Evidence so far suggests that the
promoter sequences of these genes underlie their ability to escape transcriptional scaling, resulting in reduced mRNA
concentration in larger cells [7,94].

In human cells, smFISH of 923 genes revealed that cytoplasmic transcript abundance increased with cell size for all genes
studied [11]. However, although many genes showed close coupling with cell size, other genes showed additional coor-
dination with other cell features such as cell-cycle stage or local cell crowding. One striking example was a set of genes that
showed more precise coordination with cell area than with cell volume. Intriguingly, the proteins encoded by these area-
scaling genes tended to have functions associated with membranes, or to encode membrane-associated proteins —
providing a biological rationale for why they should scale with surface area. This suggests that precise control of protein
abundance in cells of different shapes is at least partially controlled at the level of MRNA abundance. Similar results were
obtained in S. cerevisiae where ploidy-associated changes in cell size were found to be associated with changes in the
relative levels of transcripts encoding cell-surface proteins [95]. In this case, changes to cell volume alter the surface-
area-to-volume ratio, potentially affecting the relative abundances of transcripts that scale with surface area or
volume. In mouse hepatocytes, cytoskeletal and mitochondrial genes also increase their relative mRNA abundance when
cell size is increased in vivo [96]. Moreover, levels of ATP-binding cassette (ABC) transporter transcripts in mouse cells
have been shown to be continuously regulated by local cell crowding via a cell-intrinsic process involving signaling from
focal adhesions to adapt lipid composition [37]. In addition to these transcriptional mechanisms, recent proteomic studies
[85,87] suggest that there are also post-transcriptional mechanisms that change the concentrations of specific proteins as
cell size changes (without necessarily changing the concentrations of their respective mRNA transcripts).

Histone transcripts scaling with DNA content, membrane-protein transcripts scaling with surface area, and ABC-trans-
porter transcripts scaling with local cell crowding all suggest that there is more than one mechanism of ‘scaling’. Although
volume-scaling is certainly the most commonly observed and accounts for the majority of transcript abundance variability
in cell populations, transcript homeostasis is clearly multilevel — with each gene coupled to different aspects of the cellular
phenotype. It is currently unclear whether these other mechanisms operate in addition to a generic volume-scaling or
whether they are independent.

both mechanisms (Box 2 and Figure 1C). This has been studied using bulk measurements to
examine how mRNA production rates vary across the cell cycle in synchronous cultures, or to
compare mRNA production and degradation rates in populations of cells with different sizes.
More modern approaches have focused on these rates in single cells. Mathematical modeling
has also been important in guiding understanding in this field. We now review each of
these approaches.

Bulk studies

Metabolic pulse labeling in synchronous S. pombe [15,21-23] and human cell cultures [24,25]
revealed that mRNA synthesis rates increase throughout the cell cycle as cells grow. However,
different studies (even on the same organism) show conflicting results as to whether the increase
in mRNA synthesis occurs in a step-like manner coupled to DNA replication, or instead scales
more continuously with cell size changes. Some of these differences likely relate to different
synchronization procedures and/or growth conditions (reviewed in [4]).

The isolation of an S. pombe cell-cycle mutant with reduced cell size [14] allowed the first studies
connecting RNA production rates to altered cell size. These mutants, which have the same DNA
content but reduced protein and RNA abundance [14,22], were found to have reduced RNA
synthesis rates [22]. Later work extended these studies to consider different mutants that result
in DNA-to-protein ratios which vary over a fivefold range [16]. Similarly, they found that RNA
production rates for both total and mRNA are coordinated with changes in cell size, provided
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Glossary

Gene expression heterogeneity:
variability in transcript abundance
between cells in a population or tissue.
mRNA buffering: (also sometimes
known as mRNA crosstalk) refers to
coordinated changes in mRNA
production and degradation rates when
one or the other of these processes is
perturbed.

mRNA degradation rate: also known
as the mRNA decay rate, the probability
per unit time of an mRNA transcript
being degraded. Equal to the inverse of
the mean lifetime of an mRNA transcript.
mRNA production rate: also known
as the mRNA synthesis rate, the
probability per unit time of an mRNA
transcript being produced (either at a
single gene or for an entire cell). Note
that there are alternative definitions [92].
Poisson process: a model for a series
of discrete events (for example, RNA
synthesis events) that occur with a fixed
average rate but are independently and
randomly distributed in time.
Size-scaling: relates to the observation
that mRNA and protein abundance
increases proportionally with cell size.
Transcriptional burst: a period of high
transcriptional activity during which
multiple transcripts are produced from a
single gene in a short time. Bursts are
interspersed with periods of inactivity
during which no transcripts are
produced. A gene that undergoes
transcriptional bursting may be said to
be ‘bursty".
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Box 2. Volume-dependence of mRBNA synthesis or degradation rates

Considering Pol ll-mediated transcription as a simple birth-death process, mRNA is produced with probability per unit
time, k;, and degraded with probability per unit time, k; We refer to k. and k; as mRNA synthesis and mRNA degradation
rates, respectively. The evolution of the number of molecules of mRNA over time, n, is given by:

Bk, — kn m

where n is related to the mRNA concentration p, by n = pV, where V is the cell volume. In terms of mRNA concentration,
this equation can therefore be written as:

2 (e 2

When mRNA degradation is much faster than mRNA dilution due to cell growth (ks> §; 4£), we can neglect the last term.

In this case, to achieve mMRNA concentration homeostasis (dp/dt = 0), the quantity Vk;f; must be independent of volume.

This is true when mRNA synthesis rates scales perfectly with volume (ks = aV, k; = 3, for some constants a, 8 = 0) or
when mRNA degradation rates scale inversely with volume (ks = a,Kq = 5) However, there are also other possibilities
(e.g. *hybrid" in Figure 1C in main text).

that the changes in cell size are within a twofold range of the wild-type value. Likewise, in mam-
mals, pulse labeling in rat tissues [13] and human cell culture [12] showed that increased RNA
content of larger cells was accompanied by a proportional increase in RNA production. More-
over, using an inhibitor of cyclin-dependent kinases to disrupt cell-cycle progression in human
cells leads to larger cells [26] with proportionally increased RNA production rates [12].

Single cells

Quantitative measurements at the single-cell level allow direct comparisons of molecular features,
such as transcript abundance or RNA production rates, with phenotypic features such as cell size
or cell-cycle stage. This offers two advantages over bulk approaches: First, it allows the study of
gene-expression scaling in the absence of experimental perturbations by using the natural varia-
tion in cell size and cell-cycle stage. Second, it allows one to observe and account for multiple
changes to the cellular phenotype when interpreting perturbations.

Pioneering work in cultured mouse fibroblasts using label-free imaging revealed that RNA accumu-
lates throughout interphase as cells grow — doubling between cell divisions and therefore remaining
at a constant concentration [27]. In these data, the ratio of RNA to cell mass remained constant
throughout the cell cycle, even though the ratio of DNA to cell mass was not constant [28].

smFISH using probes targeting intronic pre-mRNA sequences can be used to visualize transcription
sites in fixed cells. This has been used to study the scaling of mMRNA production rates for individual
genes [6,8,9]. In human fibroblasts it was observed that smFISH signal intensity at the transcription
site increases with cell size (for three of four genes measured), whereas the number of active tran-
scription sites was independent of cell size (after normalizing for differences in gene copy number
over the cell cycle) [9]. The conclusion drawn from this was that increases in mMRNA production
rates in larger cells are achieved by increasing the number of transcripts produced in a transcrip-
tional burst rather than by increasing the frequency of bursts (transcriptional bursting is discussed
in Box 3). However, it is unclear whether the observed changes in burst size are sufficient to explain
transcript abundance scaling and whether these conclusions can be generalized to other genes or
to other biological systems. In particular, mathematical modeling together with smFISH of nascent
transcripts in A. thaliana [8] and S. pombe [6] indicate that transcription initiation rates increase
with cell size. However, these studies also indicate that transcription occurs as a continuous
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Box 3. How noisy is gene expression? Stochasticity versus deterministic variability

The number of mMRNA transcripts of each gene varies considerably between cells, even in clonal cell populations. This has
been observed across the kingdom of life and has been referred to as gene expression heterogeneity (reviewed in
[98,99]). In many cases, this has been attributed to stochasticity or ‘noise’ in transcription. However, more recent work
has indicated that mRNA abundance at the single-cell level is instead precisely regulated according to the cellular state
[6.8.11,100-102].

The production of an mRNA transcript requires several steps, including binding of RNA polymerase and other general tran-
scription factors to the gene promoter, transcriptional initiation, elongation, and termination. These events are governed by
the inherent stochasticity of molecular interactions (also referred to as intrinsic noise [103]), and can be modeled as a Poisson
process. If all processes leading to transcript production have only this minimal level of molecular variability, then the distribu-
tion of transcript abundances between cells is expected to follow a Poisson distribution [104] (the same distribution that is
observed for the length of a supermarket queue when arrivals and departures of customers are uncorrelated). However, it
has also been observed that individual genes switch between periods of high activity, in which muitiple transcripts may be
produced in a short time, and periods of low activity, in which no transcripts are produced. This is referred to as transcriptional
bursting (reviewed in [105]). The terms *burst length', 'burst size', and ‘burst frequency’ are commonly used to quantify the
duration, number of transcripts produced, and fraction of time a gene is active, respectively.

Poissonian transcription [30, 106] and transcriptional bursting [30, 107-109] have been observed in live cells across diverse
organisms. Transcriptional bursting kinetics have also been inferred from fixed cell data [110-113]; however, this relies on
the assumption that measuring transcript levels in a single cell over time is the same as measuring transcript levels in a cell
population at one timepoint. That is, it assumes that all cells can be considered to be the same. To appreciate the problem
with this assumption, consider a population of cells that exist in two states A and B, which both transcribe gene Xin anon-
bursty manner. For each cell state, the variability in transcript abundance between cells is Poissonian, with state B having
slightly higher expression of gene X (Figure |). If cell states A and B are considered together, then the distribution of tran-
script abundance is super-Poissonian. One may be tempted to conclude that transcription switches randomly
between periods of low activity (such as state A) and high activity (such as state B). However, it could also be the case that
cells are merely in two different states that may not interconvert, or may do so slowly or in a deterministic manner (e.g.,
according to position in the cell cycle or metabolic state).

Considering cell volume and cell-cycle stage as a continuous series of such states that globally affect gene expression levels,
it is clear that one must incorporate these aspects of single cells when interpreting snapshots of transcript abundance. Such
an approach has been taken when fitting kinetic models of transcription to smFISH data in A. thaliana [8] and S. pombe [6]. In
both cases the authors found that, although transcript abundance distributions were super-Poissonian, once cell size and
cell-cycle stage were taken into account the remaining variability was consistent with non-bursty transcription. Indeed, cell
size alone typically accounts for 50-80% of the cell-to-cell variability in transcript abundance in unperturbed populations
[6,8,9,11,12]. In human cells, the muitivariate cellular state (e.g., cell-cycle stage, size, shape, local cell crowding, mitochon-
drial abundance, capacity to respond to Ca>*) can explain even more variability than size alone [11,102). Similar to other
organisms, the unexplained variability of these models approached the limit of minimal stochasticity imposed by a Poisson
process.

It should be noted that these findings do not contradict the phenomenon of transcriptional bursting. However, they do
suggest that cell-to-cell variability in transcript abundance is often not caused by stochasticity of transcriptional bursts.
The danger of explaining the observed gene expression heterogeneity in a population of cells by *stochasticity' is that it
can miss interesting biology — for example, the size-scaling of transcript abundance.

Poisson process rather than in bursts (Box 3), suggesting that mechanisms to scale transcriptional
output with cell size may have additional adaptive properties depending on whether transcription is
continuous or not.

Metabolic pulse labeling has been applied at the single-cell level in human cells [9,12] and in Rana
pipiens motoneurons [29]. This approach labels all RNA synthesized during the pulse and thereby
provides a measure of the bulk RNA production rate of the cell. Image-based approaches com-
bining this with measurement of cell volume and cell-cycle stage in human cells revealed that
overall RNA production rates increase almost proportionally with cell size, but also suggested
differences between cell-cycle stages — S-phase and G2-phase cells showed increased RNA
synthesis rates compared to G1-phase cells of the same volume [12]. This is reminiscent of earlier
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Figure |. Quantifying transcript count distributions over multiple cell states. If cells in state A or state B synthesize
mRNA of gene X in a non-bursty manner, the resulting distribution of mRNA transcripts per cell is a Poisson distribution.
However, if those states are considered together (combined) the distribution is super-Poissonian, despite there being no
transcriptional bursts. Histograms show transcript count distributions for the populations in each state. For comparison,
dotted lines show a Poisson distribution with mean equal to the population mean.

work on synchronized Hela cell populations (and also other organisms) that showed a step-
increase in RNA production during or after S-phase (reviewed in [4]); however, it does not
completely agree with the picture in which increases in gene dosage caused by DNA replication
are immediately buffered by reducing transcription rates at each allele to one-half of the pre-rep-
lication levels [30-32]. These different studies measured bulk RNA production versus gene-
specific transcription using different techniques and used different organisms. Further work will
therefore be necessary to resolve the origins of this apparent discrepancy. Multivariate
approaches that quantify both cell-cycle stage and cell size in the same assay will be essential.

mRNA degradation rates

Observations across diverse eukaryotes that mRNA synthesis rates increase with cell size have
been consistent. This, together with the relative difficulty of accurately measuring mRNA decay
rates compared to synthesis rates, has resulted in less attention being paid to the regulation of
mRNA decay rates in relation to cell size. In S. pombe [6,16], Arabidopsis thaliana [8], and mam-
malian cells [9,12], mRNA decay rates in relation to cell size were measured for several genes
using transcription inhibition. It was concluded that cell size had little, if any, generic effect on
mRNA decay rates. In S. cerevisiae, however, comparing G1-phase populations at different
times after a-factor release, or different S. cerevisiae mutants and polyploid strains, indicated
that mMRNA degradation rates are reduced in larger cells [33]. This agrees with measurements
made using metabolic changes to switch off the expression of specific genes [34,35].
Regulation of MRNA decay rates according to cell size may be specific to S. cerevisiae, but it is
important to note that studies in other eukaryotes have universally measured mRNA stability
using transcription inhibition. Such inhibition results in vastly different estimates of stability com-
pared to pulse-labeling approaches [36], and is considered by many to be unsuitable for
mRNA half-life determination [37] — possibly because of coordination between mRNA synthesis
and decay (discussed later). It is also interesting to note that bulk transcript production rates mea-
sured in larger cells were slightly less than proportional to increases in cell volume for some
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human cell lines [12]. Therefore, it may be worth revisiting this in other organisms through more
sophisticated measurements of mMRNA stability.

Mathematical modeling

Mathematical modeling has been extensively employed to understand the control of the cell cycle
(reviewed in [38]) and cell size (reviewed in [2]). Modeling has also been employed together
with experiments to understand size-scaling of mRNA transcript abundance [6,8-10,12,35], and
there has also been purely theoretical work on this topic [39-42]. Because cell growth, mRNA syn-
thesis, and degradation rates, as well as cell volume and DNA template concentrations, can all vary
over time, and because feedback mechanisms can often lead to counter-intuitive phenomena when
perturbations are made, mathematical modeling continues to be a useful tool for exploring hypoth-
eses. The further integration of modeling with experiments will be important for quantitatively evalu-
ating proposed mechanisms and suggesting key experiments.

Coordinated control of mRNA synthesis and degradation

Cell size-scaling of transcript abundance seems to be predominantly mediated through control of
transcription rather than degradation. However, it has also been shown that global inhibition of
mRNA degradation is generally not associated with increased mRNA abundance because mRNA
production rates are reduced to compensate for these changes [43,44]. The converse is also true:
reduction of transcription, for example by genetic disruption of Pol Il cofactors, does not generally
lead to reduced mRNA concentration because mRNA degradation rates are reduced to compensate
[12,45-48]. These findings have led to a model referred to as mRNA buffering in which mRNA deg-
radation and production rates are kinetically coupled to achieve homeostasis of mMRNA concentration
(Figure 2) (reviewed in [49]). Most studies on mRNA buffering have been performed on S. cerevisiae,
but mRNA buffering has recently also been comprehensively demonstrated in human cells [12,48]. In
both yeast and human, the mechanistic basis remains unclear (reviewed in [49]).

Given the wealth of data showing that transcript abundance and production rates are coordinated
with cell size, it is striking that studies of mRNA buffering have generally not considered changes in
cell size. It is also striking that the size-scaling field has generally not considered mRNA buffering —
with a few notable exceptions [12,33]. However, because both size-scaling and mRNA buffering
directly impinge on mRNA concentration, it is important to determine the relationships between
these two phenomena. Indeed, it is possible that both might arise from the same mechanism.

One hypothesis that has been pursued to explain the coupling of mRNA synthesis and decay in
S. cerevisiae is that subunits of Pol |l (Rpb4/Rbp7) are physically associated with mRNA tran-
scripts from the moment of transcription until their decay in the cytoplasm — linking transcription
with mRNA export and decay [50]. However, although rpb7 is essential, cells lacking ob4 still
grow similarly to wild-type cells in optimal conditions [51] and reduced transcription in rpb4
mutants occurs together with a reduction in the mRNA decay rate [52], indicating that Rpb4 is
not strictly required for mRNA buffering. Moreover, in optimal conditions, Rpb4 and Rpb7 are
localized predominantly in the nucleus [53] where they are assembled into Pol || complexes
[564,55]. A major cytoplasmic role for Rpb4 in global MRNA homeostasis in the absence of stress
therefore remains controversial [52,56)].

Other hypotheses to explain mRNA buffering in S. cerevisiae center on the major cytoplasmic
RNA exonuclease, Xrn1. However, initial studies disagreed as to whether mRNA buffering occurs
inxm1 mutants: one study reported global transcriptional increases in xm1 mutants that resulted
in 3.2-fold increase in mRNA levels [43], whereas another study found that XRN7 deletion resulted
in decreased mRNA decay as well as decreased mRNA synthesis (indicating buffering) [44]. The
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Figure 2. mRNA buffering. Increased or decreased mRNA decay elicits a compensatory change in transcription rate, and
vice versa for perturbation of transcription. This allows mRNA concentration homeostasis to be robust to perturbations of
mRNA metabolism.

latter (functional MRNA buffering in xm1 mutants) is supported by more recent experiments using
orthogonal techniques [57,58]. However, none of these studies measured cell size, and mRNA
production was normalized to cell number (using spike-ins) rather than to total protein or
mRNA content [57-59]. This is important because haploid xm7 mutants have been reported to
be among the top 5% of S. cerevisiae mutants by cell size [60]. If we extrapolate conclusions
from the size-scaling field to these larger xrn1 mutant cells, then an increased mRNA
content and mRNA synthesis rate (but not mMRNA concentration) may in fact be caused by an
increase in cell size, and not by a disrupted buffering mechanism.

This is not only an issue for xm1 mutants. In S. cerevisiae, genetic perturbation of general
transcription factors or Pol Il itself often results in changes to average cell size [60] and to changes
in the distributions of cell sizes in a population [61]. In S. pombe, perturbing the xrn1 ortholog
exo2 also results in elongated cells [62] and Pol Il subunits have been shown to be limiting for
cell growth [63]. In Drosophila melanogaster, perturbation of MRNA processing and transcription
also results in cell size changes [64]. This highlights the importance of considering the effect of
cell size changes together with the effects of perturbed mRNA production and degradation on
transcriptome abundance.

In human cells, such an approach was recently taken in a genome-wide genetic screen for
perturbations that affect bulk RNA synthesis rates (determined using metabolic labeling) [8,12].
Crucially, this screen combined quantification of cell size and cell-cycle stage together with the
measurement of RNA synthesis rates in thousands of single cells for each of >20 000 genetic
perturbations. This allowed comparison of the rate of RNA synthesis in perturbed cells with
that of unperturbed cells of the same size and cell-cycle stage. In this way, only perturbations
whose changes in RNA production rate cannot be explained by changes to cell size and/or cell-
cycle stage were considered as having altered RNA synthesis. Using this measure, thousands of
perturbations resulted in altered RNA synthesis rates, demonstrating that RNA synthesis rates
are easily perturbed. However, the vast majority did not result in changes in RNA concentration,
indicating that mRNA buffering is a widely observed phenomenon in human cells [12].

Mechanistic basis of mMRNA concentration homeostasis

Limiting factor model

A popular model for scaling of mRNA production with cell size is the so-called 'limiting factor
model [6,9,35]. In this model, the level of a particular factor that is essential for transcription is
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precisely coordinated with cell size. That is, it has a constant concentration. If this limiting factor
has a high affinity for DNA, then its local concentration on DNA will be proportional to the size
of the cell despite having a constant global concentration [5,9] (Figure 3A). Another variant of
this model has been proposed in which the limiting factor does not need to be DNA-bound
and only needs to be localized to the nucleus [9]. This model requires that the nuclear
volume does not scale with cell volume, but this is typically not the case: nuclear volume is
known to scale tightly with cell volume in many cellular systems (reviewed in [65]).

In both S. cerevisiae and S. pombe, Pol Il occupancy on chromatin increases with cell size
[6,16,35], and in S. pombe and human cells Pol Il abundance in the nucleus increases with cell
and nuclear size [6,12]. Pol Il itself, as well as components of the Pol Il preinitiation complex
(PIC), are therefore prime candidates as the limiting factors for transcription. The effects of a
rapid 50% reduction in nuclear levels of several different PIC components on the chromatin occu-
pancy of Pol Il were recently measured in S. cerevisiae [35]. This revealed that none of the PIC
components had a large effect on Pol Il genome occupancy, except for Rpb1 (the largest subunit
of yeast Pol ll) itself. Moreover, it was found that overexpression of the 12-subunit Pol Il complex
resulted in increased Rpb1 levels on chromatin [35], suggesting that Pol Il itself shows character-
istics expected of a limiting factor in the sense of the model. However, although Pol Il abundance
doubled (>100% increase), Pol Il loading on chromatin only increased by ~20%, suggesting that
additional factors limit Pol Il loading or the assembly of functional Pol Il complexes. Moreover, in
this study it remains unclear whether this minor increase reflects a functional engagement that
results in increased mRNA production rates.

Although the limiting factor model can explain how a constant concentration can lead to a size-
dependent mRNA production rate from a size-independent DNA template (Figure 3A), it does
not explain how the concentration of the limiting factor (e.g., Pol ll) is determined or maintained.

(A) Limiting factor (B) mRNA-based feedback
Cell valume 2 Limiting factor (abundance) sy:zellis l . * '::g::;
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Limiting factor X il an,
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Transcription T Direct or indirect feedback from nuclear [nRNA]

Cell volume

(C) Local feedback model
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Figure 3. Mechanisms of transcriptional size-scaling. (A) The limiting factor model posits that a factor that is limiting for transcription (e.g., Pol ll) is closely coordinated
with cell volume and thereby leads to increased mRNA production in larger cells, despite a fixed amount of DNA. (B) The mRNA-based feedback model of MRNA transcript
concentration homeostasis [12] comprises preferential degradation of inactive Pol Il together with negative feedback from nuclear mRNA concentration on the global rate
of transcriptional activation. (C) The local feedback model of transcript concentration homeostasis [58] in which many different feedback loops stabilize different parts of
the mRNA metabolic pathway. A common motif is product inhibition in which the rate of a particular step in the pathway is sensitive to the concentration of its product.
Numbers in square brackets are citations of studies on the indicated regulatory loops. Note that the mechanistic details of the feedback loops remain unknown and
also that the model depicted here combines results from several different model organisms. Many more local feedbacks may exist, and in fact should exist if such a
model is able to coordinate the kinetics of the entire mMRNA metabolic pathway. Abbreviations: m7G. 7-methylguanine; PABP, poly(A)-binding protein; Pol Il, RNA
polymerase |I.
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This is crucial because, in this ‘'simple’ model, the concentration would directly set the mRNA
synthesis rate. Moreover, with Pol Il as the limiting factor, the model could potentially have a
problem with runaway positive feedback wherein a random fluctuation of transcription could
lead to increased abundance of Pol Il mRNA transcripts and thereby increased abundance of
Pol Il protein. With Pol Il as the limiting factor, this would lead to increased transcription of all
mRNA (including transcripts encoding Pol Il itself) and therefore even further increased abun-
dance of Pol Il protein, and so on [9]. For both reasons, it seems unavoidable that there must
be feedback mechanisms in place to control the levels of the limiting factor. Recent work in
human cells suggests that this is indeed the case and could be mediated through the effects of
nuclear mRNA concentration on Pol Il transcription [12].

Regulatory feedback in mRNA metabolism

In a study of genome-wide perturbations that affect cell-size-corrected RNA production rates in
human cells it was found that disruption of nuclear mRNA metabolic pathways downstream of
transcription initiation, including transcript processing, nuclear degradation, and nuclear
export, often result in reduced bulk RNA synthesis [12]. Moreover, long-term depletion of these
factors leads to reduced concentrations of Pol Il. This suggests that transcription rates and Pol
Il levels are reduced when cells are perturbed in their ability to remove mRNA from the nucleus.
In many cases, the reduction in transcription was seemingly sufficient to buffer the perturbation
so that the nucleus did not accumulate mRNA. However, acute depletion of the nuclear RNA
exosome (a protein complex responsible for mRNA decay) via auxin-mediated degradation of
the catalytic subunit DIS3 did lead to nuclear mRNA accumulation. Strikingly, this first resulted
in reduced levels of actively transcribing Pol Il (as measured by Pol Il serine-2 phosphorylation
levels) whereas total levels of Pol Il were less affected over short timescales [12]. Similar reductions
in transcription and Pol Il levels were observed when forcing nuclear retention of mRNA [12], indi-
cating that this is not specific to nuclear RNA exosome perturbation.

These experiments suggest that transcription is inhibited by nuclear mRNA (Figure 3B). Such a
mechanism is an example of enzyme product inhibition, a common module in almost every
biosynthetic pathway [66]. This type of negative feedback is probably one of many regulatory
links that couple the kinetics of the various stages of mMRNA processing and transport to ensure
mRNA concentration homeostasis (Figure 3C). Indeed, the dynamics of transcriptional shutdown
in S. cerevisiae in response to acute perturbation of the different steps of cytoplasmic mRNA deg-
radation are consistent with a model of 'local feedback' along the life cycle of the mRNA [58].
Within the nucleus, it has been shown that nuclear export in human cells depends on continuous
transcript production because Pol Il inhibition results in nuclear retention of nuclear-injected
mRNA [67]. This implies that nuclear export rates are coordinated with transcript production
rates. In S. cerevisiae, the poly(A)-binding protein Nab2 is required for protection of nascent
mRNA [68] and its levels are strongly controlled by the nuclear RNA exosome [69]. This suggests
that nuclear mMRNA concentration homeostasis is also achieved via regulation of nuclear mRNA
decay. Nab2-mediated mRNA stabilization is also linked to nuclear export because acute inhibi-
tion of export leads to nuclear decay of newly transcribed RNA (when the Nab2 pool becomes
exhausted due to an elevated nuclear mRNA concentration) [70]. In human cells, release of na-
scent transcripts from the chromatin template after transcription can also depend on splicing fac-
tor availability [71]. This is important because splicing factors, SR proteins, and RNA export
factors are all known to be under feedback regulation to ensure their homeostasis (reviewed in
[72]). This often takes the form of autoregulation in which a protein negatively feeds back to gen-
erate a non-functional version of its own mRNA, for example through regulation of alternative
splicing (e.g., SRSF1) or nuclear export (e.g., NXF1). Similar to the example of Nab2 regulation
by the exosome in S. cerevisiae mentioned earlier [69], there are also examples of cross-
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regulation in human cells: SRSF3 regulates the splicing of other SR-protein family members [73],
and highly abundant HNRNPD and HNRPNL cross-regulate their own paralogs [74,75].

Many of these regulatory links can contribute to homeostatic control of mMRNA metabolism
(Figure 3C). This, together with the observation that Pol Il levels are modulated (in both directions)
by perturbation of processes downstream of transcription [12], has important consequences for
the limiting factor model of transcriptional scaling. Although this model can explain how a
constant concentration of Pol Il is converted to a size-dependent mRNA production rate from a
size-independent DNA template, its most essential element, namely the precise size-scaling of
Pol Il levels, may be a consequence, and not a cause, of altered transcriptional activity. It is well
known that Pol Il protein is rapidly degraded by the ubiquitin-proteasome system when it is
transcriptionally inhibited and not bound to chromatin [76-81]. Therefore, any control system
that regulates Pol Il association with chromatin may result in an altered Pol Il concentration.
From classic in vitro experiments we know that RNA inhibits transcription by dissociating Pol Il
from the DNA [82], and recent studies on transcriptional condensates indicate that this can
also act locally inside the nucleus, where a local increase of newly synthesized mRNA in the
condensate results in condensate dissolution and dissociation of Pol Il from the chromatin [83].
In other words, the exact parameter that both the mRNA-buffering and cell size-scaling systems
attempt to keep constant, namely mRNA concentration, may directly control transcriptional
activity. In the case of cell size-scaling, Pol Il abundance would then scale with cell size because
transcription rates scale with cell size — rather than the other way around. Importantly, this model
would still predict that short-term depletion of Pol Il results in less Pol Il on chromatin in the short
term, and that overexpression of Pol Il would result in increased Pol Il loading, as recently
observed in S. cerevisiae [35] (unless homeostasis of Pol Il concentration is rapid and perfect).

When scaling breaks down

During prolonged cell-cycle arrest in S. pombe, cells continue to grow until they become
extremely large (~fivefold larger than wild-type). At a certain point, RNA synthesis rates fail to con-
tinue to increase proportionally with cell size unless DNA content is also increased [16]. Similar
observations have been made in S. cerevisiae, where it was further shown that RNA and protein
concentrations are actually reduced in very large cells — demonstrating that cell volume can con-
tinue to increase despite dilution of RNA and protein [84]. In S cerevisiae, it was suggested that
this reduced RNA concentration is due to activation of a stress response. Increased cell size is
also associated with cellular aging and senescence in S. cerevisiae [84,85], mouse hematopoietic
stem cells [86], and human cell lines [87]. It has been proposed that cell size may even be
causative for these changes in cell physiology [84-86]. Possibly related to this, it has been
suggested that high RNA concentrations in the nucleus may be necessary to maintain the
solubility of intrinsically disordered proteins [88].

Concluding remarks

Bringing together the fields of transcriptional size-scaling and mRNA buffering holds enormous
promise for moving beyond our current understanding of how relative gene expression levels
are controlled towards understanding the kinetic basis that allows coordination of the absolute
transcriptome of a single cell to the cellular phenotype (see Outstanding questions). Recent
observations that nuclear Pol Il levels are limiting for transcription [35] and are coordinated with
both cell size [6,12,16,35] and mRNA output across perturbations [12] indicate that mRNA
buffering and transcriptional scaling with cell size both converge on the regulation of Pol || abun-
dance. Understanding the mechanisms that control Pol Il abundance is therefore of utmost
importance. Evidence that Pol Il abundance can be controlled in response to disruption of splicing
or by blocking nuclear export suggests a fundamental coupling of mMRNA production, export, and

¢? CellPress

Outstanding questions

Which factors change in abundance to
buffer the changes in bulk RNA pro-
duction rates produced by perturba-
tions and thereby allow robust mMRNA
concentration homeostasis? How do
cells bring about these changes in
abundance?

How is Pol Il abundance regulated
according to cell size? To what extent
is this achieved by feedback?

Are the mechanisms underlying
transcript abundance scaling conserved
among eukaryotes?

Is the total mRNA concentration of a
cell under homeostatic control (and
the abundance of each transcript
determined as a fraction of this total)?
Or is mRNA transcript homeostasis
gene-specific (and the abundance
of each transcript determined
according to cell volume)? Are there
some transcripts with more precise con-
centration homeostasis than others?

Beyond volume-scaling: how do some
genes scale with different aspects of
cellular state, for example cell-surface
area or DNA content? Is this additive
to, or independent from, volume-
scaling?
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degradation rates. Two important aspects of experimental design and interpretation may help to
achieve the goal of understanding this coupling: first, if mRNA buffering and transcriptional size-
scaling are part of the same mechanism, then the timescales of transcriptional adaptation in
response to perturbations should be shorter than the timescale over which cells grow. The
traditional tools of genetics are therefore likely to be too blunt to understand causes and
consequences in perturbation experiments. We must instead focus on acute perturbations
measured with timecourse experiments that evaluate both the short-term (direct) and long-
term (adaptation) effects of perturbations. In most model organisms there are several methods
to rapidly control the localization and abundance of targeted proteins [89]. Second, perturbations
must be evaluated using multiple readouts to more fully capture phenotypic changes — ideally at
the level of individual cells. As a minimum, it is essential to consider cell size changes to draw
conclusions about RNA concentration homeostasis, and one must be careful to distinguish
between abundance and concentration. This is readily achieved by using quantitative cellular
imaging where spatially resolved readouts of multiplexed cellular phenotypes for both RNA and
protein are now possible [12,90,91]. Third, we must embrace the idea of feedback and embed
studies of transcriptional regulation within the context of cellular metabolism — where multiple
regulatory feedbacks are the expectation rather than the exception. After all, although transcrip-
tion is often thought of as expression of the genome, the synthesis and degradation of mMRNA as a
biomolecule is also a fundamental part of cellular metabolism.
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