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Multimodal perception links cellular state to
decision-making in single cells

Bernhard A. Kramer"?, Jacobo Sarabia del Castillo', Lucas Pelkmans

Individual cells make decisions that are adapted to their internal state and surroundings,
but how cells can reliably do this remains unclear. To study the information processing
capacity of human cells, we conducted multiplexed quantification of signaling responses and
markers of the cellular state. Signaling nodes in a network displayed adaptive information
processing, which led to heterogeneous growth factor responses and enabled nodes to
capture partially nonredundant information about the cellular state. Collectively, as a
multimodal percept this gives individual cells a large information processing capacity to
accurately place growth factor concentration within the context of their cellular state

and make cellular state-dependent decisions. Heterogeneity and complexity in signaling
networks may have coevolved to enable specific and context-aware cellular decision-making

in a multicellular setting.

ontextual decision-making by cells in a

collective is a hallmark of multicellular

systems (I—4). To achieve context-aware

behavior, individual cells must integrate

the input they receive from growth factors
with complex information on their physico-
chemical state. Cells perceive this information
through activation of intracellular signaling
networks; however, individual signaling nodes
in such networks are thought to have low
capacity for processing information as a result
of their highly variable growth factor responses
in single cells (5—7). It thus remains largely
unknown if and how individual cells can process
a large amount of information in a contextual
manner.

We explored the possibility that variable
growth factor responses do not reflect a
limited information processing capacity but
instead represent adaptive information pro-
cessing. In adaptive information processing
the response of a signaling node in an indi-
vidual cell is adapted to the physicochemical
state of the cell and its surroundings (here
collectively referred to as the cellular state),
through mechanisms by which the cellular
state controls the activities of signaling nodes
(8, 9). This implies that signaling responses not
only capture information about the amount of
growth factor a cell is exposed to but also—and
perhaps primarily—obtain information about
its cellular state. If the activation of different
signaling nodes in a network is dependent on
different properties of the cellular state then
each node would carry partially nonredun-
dant information. As a whole, the network
could then generate a multimodal percept

'Department of Molecular Life Sciences, University of Zurich,
Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Molecular Life Sciences PhD program., Life Science Zurich
Graduate School, University of Zurich, Winterthurerstrasse
190. 8057 Zurich, Switzerland.

*Corresponding author. Email: lucas.pelkmans@mls.uzh.ch

Kramer et al., Science 377, 642-648 (2022)

that captures a comprehensive picture of
a cell’s multicellular context and internal
state, facilitating accurate and contextual
decision-making.

Results
Multiplexed quantitative imaging of signaling
and cellular state

To obtain multiple readouts of the cellular
state in addition to signaling responses we
applied 4i—a high-resolution multiplexing
technology on the basis of iterative staining
and elution of antibodies (10)—to human epi-
thelial cells (184A1). After 4 days of growth,
cells were deprived of serum and growth factors
for 12 hours and subsequently exposed to five
different concentrations of epidermal growth
factor (EGF) for 5 min (Fig. 1A). After 30-plex
4i, cell segmentation, and quality control, the
dataset contained ~8000 individual cells per
replicate (n = 3) and condition (Fig. 1B and fig.
S1, A to C), showing high technical and bio-
logical reproducibility (fig. S1, D to F). Images
of cells reveal the highly heterogeneous nature
of acute signaling responses as well as that of
the cellular state (Fig. 1C). Quantifying the
abundances of three signaling responses and
three cellular state markers in every cell and
comparing single-cell distributions of the five
conditions revealed that although signaling
responses typically display changing levels
with increasing amounts of EGF in either a
gradual or switch-like bimodal manner, their
responses were highly heterogeneous between
cells. This results in overlapping single-cell
distributions between different doses of EGF
(Fig. 1D and fig. S2, A and B). By contrast,
cellular state markers did not show any change
(Fig. 1D). A systematic assessment of all single-
cell features quantified from the images re-
vealed that ten signaling responses downstream
of EGF displayed significant changes whereas
650 features of the cellular state did not change
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during a 5 min exposure to EGF (Fig. 1E). These
features quantify or act as proxies of properties
across multiple spatial scales such as relative cell
positioning within a population, position in the
cell cycle, and subcellular textures of organelles
(Fig. 1F and fig. S2, C and D). Thus although
the cellular state changes in response to EGF
stimulation (1), this occurs at longer time-
scales. Inhibitors of signaling nodes abrogated
signaling responses to EGF but did not change
markers of the cellular state (fig. S2E). We can
thus test whether the heterogeneity seen in
acute EGF-induced signaling responses is
linked to the preexisting heterogeneity in
cellular states.

The preexisting cellular state landscape shapes
signaling responses in single cells

A projection of the multidimensional cellular
state space into a two-dimensional (2D) land-
scape (12) was largely continuous except for
two parts that reflect G1 and G2 of the cell
cycle (Fig. 1F and fig. S2, F and G). Signaling
responses of single cells distribute in differ-
ent patterns across this landscape [Fig. 2A
(middle) and fig. S4A], which was accurately
predicted by features of the cellular state (Fig.
2A and fig. S3). This required multiple features
in different combinations for different signal-
ing nodes (fig. S4, B to D). For instance, al-
though local cell density was an important
feature for most signaling responses, the abun-
dance of Paxillin—a proxy for cell spreading—
was particularly important for predicting levels
of pS6 in single cells, the abundance of Sec13
was particularly important for predicting pERK,
and the amount of nuclear Yapl was important
for predicting nuclear translocation of FoxO3a
[Fig. 2A (middle) and fig. S4B]. Thus the cellular
state has a specific multivariate effect on sig-
naling responses in individual cells. It also
predicts switch-like bimodal response properties
(being either a low or high responder) with high
accuracy, as shown by some signaling nodes at
low doses of EGF (Fig. 2B, Fig. 1D, fig. S2B,
and fig. S4E), and achieves high prediction
accuracy across the full range of EGF doses
tested (Fig. 2C, fig. S4F, and fig. S5). As a result,
variation in signaling responses induced by
different cellular states is typically larger than
variation induced by different concentrations
of EGF (Fig. 2, D and E).

Multimodal perception accurately decodes
EGF concentration

The above suggests that the sensitivity of sig-
naling nodes—quantified by the effective
concentration of EGF at which a node is half-
maximally activated (ECs,)—is adapted to the
cellular state. To study this, we defined 18 cel-
lular state classes and compared their dose-
response curves (Fig. 3A and fig. S6, A to E).
This showed that, for instance, the EC;, of pPERK
differed by a factor of at least three between
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Fig. L Acute signaling responses and preexisting cellular states across
spatial scales. (A) Experimental workflow. (B) 4i, imaging setup and quality
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(top) and zoom-in of cells (bottom). Scale bars: 7.5 um. (D) Density
distributions of mean intensities in either the cytoplasm or nucleus of six
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cellular states (Fig. 3B), with class 2 cells
(small cells grown in densely populated
areas and having abundant early endosomes)
showing a particularly high EC;, and class
15 cells (grown in sparsely populated re-
gions and having nuclear Yapl) a low ECs,.
Inferring single-cell EC;ys revealed that the
sensitivity of each signaling node was ad-
apted to the cellular state in distinct ways and
for different ranges of EGF concentrations
(Fig. 3C and fig. S6F).

To test whether signaling node-specific,
cellular state-conditioned sensitivity to EGF
could provide enough information to individual
cells to perceive a wide range of EGF concen-
trations in a contextual manner, we quanti-
fied the amount of mutual information between
the signaling responses of individual cells and
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the five doses of EGF they are exposed to (13).
Perfect decoding ability would show mutual
information of log2(5) or 2.3 bits. When cells
were considered to use information from one
node (unimodal perception) and it was as-
sumed that their signaling was not condi-
tioned to the cellular state (noncontextual),
cells could only distinguish large differences
between individual doses (Fig. 3D) and had
little decoding capacity (0.7 bits) (Fig. 3E and
fig. S7, A to C). When we considered that the
cellular state affects the signaling response
(contextual), smaller differences between indi-
vidual doses could be distinguished and the
decoding capacity of individual cells increased
(1.2 bits). When cells were considered to use
information from multiple nodes (multimodal
perception) (I4) they could approach perfect
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decoding (2.1 bits), but only when condition-
ing by the cellular state was considered (Fig.
3, D to E). Inhibitor experiments showed
that a multimodal response was required to
achieve the greatest accuracy. Inhibiting
either MEK or AKT reduced the perception
accuracy of EGF concentration and inhibiting
both led to a stronger reduction (Fig. 3F and
fig. S7, D to F). This indicates that multi-
modal perception could enable individual cells
to accurately distinguish a range of EGF con-
centrations in a manner that is conditioned to
the cellular state.

Multimodal perception comprehensively maps
cellular state space

Conditioning by the cellular state implies that
the multimodal response of an individual
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Fig. 2. Cellular state determines the heterogeneous signaling response.
(A) (Left) Regression approach. (Upper middle) Measured and predicted
levels of three signaling response markers. R?, explained variance. (Lower
middle) Dominance analysis of cellular state features in explaining signaling
responses. Yellow boxes indicate specific examples. (Right) Side-by-side
projection of measured and predicted levels of pERK. Scale bars: 15 um.
(B) (Left) Logistic regression. (Right) Confusion matrices for class
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levels of pERK across all concentrations of EGF. (Right) R? for all

cell to EGF carries a considerable amount
of information about the cellular state, espe-
cially if nodes in a network not only contain
redundant but also unique information and
can act in a synergistic manner (Fig. 4A). For
instance, the cytoplasmic abundances of pERK
and pMTOR in cells show a strong positive
correlation, suggesting redundancy, which is
observed to various degrees for all nodes in
the network (Fig. 4A and fig. S8A). However,
the amounts of pERK and pMTOR also scale
with cellular state properties that are distinct
when compared with the other as illustrated
for Secl3 and HSP60 (Fig. 4A). This can be
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revealed by partial correlation analysis, indi-
cating that the amounts of pERK scale with
the abundance of Secl3 whereas the amounts
of pMTOR scale with the abundance of HSP60,
and can be appreciated in images of individual
cells that differ in the abundance of one but
not the other cellular state marker (Fig. 4A).
To estimate the amount of information pERK
and pMTOR carry about these cellular state
properties and to decompose it into redundant
(captured by either node), unique (captured by
one node), and synergistic components (cap-
tured only by the combined response of both
nodes), we employed partial information de-
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signaling responses across all EGF concentrations. (D) Variation in signaling
responses induced by the preexisting cellular state- and variation-induced
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composition (PID) (75). pERK and pMTOR
capture redundant but also unique inform-
ation about Sec13 and HSP60 abundance,
respectively (Fig. 4A, right bar graphs). For
the latter, pERK and pMTOR also capture
synergistic information.

We next applied this analysis to all tested
nodes (Fig. 4, B and C, and fig. S8B), showing
that each node displays some distinct scaling
with various cellular state properties (Fig. 4B).
Many of these effects have previously been
reported such as (negative) pMEK scaling
with local cell density (16), pAKT scaling
with cell area (8), pRSK scaling with the
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transcriptional state of cells (pPolll) (17),
pGSK3b scaling with the abundance of late
endosomes (VPS35) (18), and pEGFR scaling
with the abundance of Paxillin (19) (Fig. 4B).
Only by analyzing these multiple connec-
tions between signaling responses and cellu-
lar state properties collectively in the same
cells and across many cells can we observe
that nodes capture not only redundant but
also unique and synergistic information about

Kramer et al., Science 377, 642-648 (2022)

the cellular state (Fig. 4C and fig. S9). To test
whether this information propagates through
the network, we used inhibitors. The redun-
dant information about cellular state fea-
tures between upstream (pAKT and pERK)
and downstream nodes (respectively nuclear
FoxO3a and pS6) was reduced upon inhibi-
tion of the upstream node (Fig. 4D), whereas
the unique information about the cellular
state captured by the downstream node was
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not reduced and sometimes increased (fig.
S8C). For instance, although nuclear deple-
tion of FoxO3a was reduced when AKT was
inhibited it was still heterogeneous and cor-
related more strongly with position in the
cell cycle (fig. S8D). Thus, cellular state infor-
mation can propagate through the network
and nodes can integrate information from
multiple sources depending on the activity of
other nodes.
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To analyze whether collectively, as a multi-
modal percept, signaling nodes can compre-
hensively map cellular state space and inform
an individual cell on its position in this space,
we quantified the overlap between the statis-
tical neighbors of an individual cell in cellular
state space with its statistical neighbors in
signaling space (Fig. 4E). Unimodal percep-
tion can only map neighborhoods within small

regions of the cellular state space (Fig. 4E and
fig. S10A) whereas a multimodal percept based
on 10 nodes can map the neighborhood across
the whole cellular state space (Fig. 4E and fig.
S10B). The information gain in multimodal
perception is particularly high for the first six
nodes in the network (fig. S10C). Furthermore,
only multimodal perception can accurately
predict to which cellular state class an individual

cell belongs for a large diversity of cellular states
(Fig. 4F and fig. S10, D and E).

Multimodal perception links cellular state to
decision-making

To test whether multimodal perception is
used by cells to make context-aware decisions
we exposed cells to longer EGF stimulation. To
avoid problems resulting from the fact that
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Fig. 5. Multimodal perception links cellular state to decision-making.
(A) (Left) Position in cellular state space conditions signaling response.

On long time scales, this changes the position in state space. (Top right)
UMAP of the responding cellular state. (Bottom right) UMAP of the
nonresponding cellular state. (B) Fractions of cellular state features related
to properties and activities that change after 16 hours of EGF. (C) (Left)
Classification of pRB status. (Middle) Fraction pRB status. (Right)
Representative images. (D) (Left) Measured and predicted (logistic
regression using indicated variables) pRB status on the cellular state
landscape. Accuracy (middle), and ROC curves (left) of the classifier.

(E) (Left) Perturbations that only affect position in signaling space and not
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in state space. changes the decision expected of distinct cellular states.
(Middle) Fraction of pRB status with different inhibitors. (Right) Prediction
accuracy of a logistic regression classifier trained on dimethyl sulfoxide
(DMSO)-treated cells predicting pRB status in cells treated with inhibitors
using the indicated spaces as variables. (F) (Left) pRB status visualized on a
UMAP of the multimodal signaling space. Dashed blue line, decision
boundary. (Middle left) Fraction of pRB status in different cellular state
classes across inhibitors. (Middle right) Values of selected cellular state
features. (Right) Cellular state class on UMAPs of state and signaling space.
(G) Density of cellular state classes cells projected on both state and
signaling space. Class 2 (top) and Class 4 (bottom).
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some properties of the cellular state may
change during longer stimulation times, we
defined a nonresponding cellular state space
(Fig. 5A and fig. S11A). This resulted in the
exclusion of about half of all cellular state
features and enrichment of features related to
the transcriptional state and cell proliferation
but also to cell morphology, the cytoskeleton,
and membrane trafficking (Fig. 5B and fig. S11A).
One of these is phosphorylated retinoblas-
toma protein (pRB), which is under the con-
trol of multiple signaling nodes (11, 20). RB is
phosphorylated in actively proliferating cells
and marks an EGF dose-dependent decision-
making event to reenter the cell cycle (Fig. 5C).
Projecting the status of individual cells as
pRB-negative (pRB-) or pRB-positive (pRB+)
after 16 hours of EGF induction on the cellular
state landscape showed specific patterns across
different doses of EGF, which were accurately
predicted by using properties of the cellular
state (Fig. 5D and fig. S11B). pRB status was
also accurately predicted by the multimodal
percept of single cells but less accurately by
the responses of individual signaling nodes
or their combination (Fig. 5D and fig. S11B).
Thus, both the position in cellular state space
as well as the position in multimodal signaling
space allows for an accurate prediction of
the response of single cells to reenter the
cell cycle.

We next treated cells with inhibitors of AKT
(AKTi) and MEK (MEKi). At low concentrations
these inhibitors did not affect the positions of
cells in cellular state space but did so in mul-
timodal signaling space (fig. S11, C and D),
both alone and in combination, resulting in
altered fractions of pRB status (Fig. 5E). These
altered responses were not accurately predicted
by models based on the cellular state if trained
on unperturbed cells but were accurately pre-
dicted by models based on the multimodal
percept (Fig. 5E, right bar graph). Models based
on the cellular state trained on perturbed cells
were also accurate (fig. SI1E). Thus, the position
in multimodal signaling space couples cellular
state to decision-making, which is altered by
the inhibitors. To explore this we projected
PRB status of both untreated and treated cells
in the multimodal signaling landscape, reveal-
ing a sharp decision boundary (Fig. 5F). We
then defined five classes of cells from cellular
state space each with a distinct decision-making
profile across perturbations. These classes oc-
cupy different regions in cellular state space and
consequently different regions in multimodal
signaling space (Fig. 5F). Although their posi-
tions in cellular state space remained the same
during inhibitor treatment, their positions in
multimodal signaling space changed, affecting
the response of these cells (Fig. 5G and fig. S11F).
For instance class 2 cells, which grew in regions
of low local cell density and were large with
abundant late endosomes, were located on the
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pRB+ side of the decision boundary (Fig. 5F).
Individually inhibiting AKT or MEK affected
their position in multimodal signaling space
but did not result in crossing of the pRB
decision boundary (Fig. 5G). Inhibiting both
AKT and MEK resulted in altered pRB status
(Fig. 5G). Thus, cells in this state were only
prevented from re-entering the cell cycle by
inhibiting both AKT and MEK. By contrast
class 4 cells, which grew in regions of high
local cell density, were small and had rela-
tively few endosomes but an abundant Golgi
complex, and were located on the pRB- side
of the decision boundary in the unperturbed
condition (Fig. 5F). Although all treatments
affected their position in multimodal signal-
ing space they only became pRB+ upon in-
hibition of AKT (Fig. 5G). Thus, cells in this
state remained nonproliferative upon EGF
stimulation but became aberrantly prolifera-
tive upon AKT inhibition.

Discussion

We have shown that the heterogeneity in
acute signaling responses of individual cells
contains partially nonredundant information
about the cellular state that influences the
growth factor response. The cellular state has
a stronger effect on these responses than changes
in growth factor concentration and thus repre-
sents an important source of information to
predict these responses. Collectively, as a mul-
timodal percept this enables individual cells
to accurately sense a range of growth factor
concentrations and to integrate this with their
cellular state to make cellular state-dependent
decisions. The cellular state is thus at least as
relevant as growth factor concentration in de-
one purpose of cellular structures in controlling
the activation of signaling nodes (8, 9) is to inject
information about the cellular state into the
decision-making process. It may also help
explain why signaling responses are heteroge-
neous and signaling networks have a certain
complexity. Although the redundant elements
in network complexity can counteract uncer-
tainty in individual responses (5) the nonre-
dundant and synergistic elements can enable
adaptive responses of multiple nodes to act
as a multimodal percept that captures a large
amount of information about the cellular state.
This suggests that a collective of cells repeatedly
generates the same spectrum of single-cell
responses through generating the same land-
scape of cellular states. This may be important
during development in which spatial effects
and self-organization could drive the robust
formation of such landscapes, providing the
appropriate context for morphogens to induce
a range of cellular decisions even in the ab-
sence of well-defined gradients (21, 22). That
the cellular state determines the heteroge-
neous response of signaling nodes to clinically
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tested inhibitors resulting in different and
sometimes unwanted state-dependent decisions
may also be relevant for the treatment of di-
seases such as cancer (23).
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Cellular information processing

Prior studies have shown that the responses of individual cells to growth factors are variable, raising the question of
whether cells detect more information than the mere presence or absence of growth factor. Kramer et al. monitored
the response of cells to various concentrations of epidermal growth factor. They found that responses are indeed
variable, apparently because signaling nodes store other information about the state of the cell and thus respond
differently to the same concentration of growth factor. Thus, cells have a way to process information in the context of
their surroundings and current cell state. —LBR
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